BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25211333)

  • 1. Defects in host immune function in tree frogs with chronic chytridiomycosis.
    Young S; Whitehorn P; Berger L; Skerratt LF; Speare R; Garland S; Webb R
    PLoS One; 2014; 9(9):e107284. PubMed ID: 25211333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host stress response is important for the pathogenesis of the deadly amphibian disease, Chytridiomycosis, in Litoria caerulea.
    Peterson JD; Steffen JE; Reinert LK; Cobine PA; Appel A; Rollins-Smith L; Mendonça MT
    PLoS One; 2013; 8(4):e62146. PubMed ID: 23630628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki.
    Ellison AR; Savage AE; DiRenzo GV; Langhammer P; Lips KR; Zamudio KR
    G3 (Bethesda); 2014 May; 4(7):1275-89. PubMed ID: 24841130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immmunological clearance of Batrachochytrium dendrobatidis infection at a pathogen-optimal temperature in the hylid frog Hypsiboas crepitans.
    Márquez M; Nava-González F; Sánchez D; Calcagno M; Lampo M
    Ecohealth; 2010 Sep; 7(3):380-8. PubMed ID: 20890631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancestral chytrid pathogen remains hypervirulent following its long coevolution with amphibian hosts.
    Fu M; Waldman B
    Proc Biol Sci; 2019 Jun; 286(1904):20190833. PubMed ID: 31161901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal variation in the prevalence of a fungal pathogen and unexpected clearance from infection in a susceptible frog species.
    Garnham JI; Bower DS; Stockwell MP; Pickett EJ; Pollard CJ; Clulow J; Mahony MJ
    Dis Aquat Organ; 2022 Feb; 148():1-11. PubMed ID: 35142293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain differences in the amphibian chytrid Batrachochytrium dendrobatidis and non-permanent, sub-lethal effects of infection.
    Retallick RW; Miera V
    Dis Aquat Organ; 2007 May; 75(3):201-7. PubMed ID: 17629114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the potential use of an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) as an anti-fungal treatment against the amphibian chytrid fungus, Batrachochytrium dendrobatidis.
    DiRenzo GV; Chen R; Ibsen K; Toothman M; Miller AJ; Gershman A; Mitragotri S; Briggs CJ
    PLoS One; 2020; 15(4):e0231811. PubMed ID: 32302369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility of frogs to chytridiomycosis correlates with increased levels of immunomodulatory serotonin in the skin.
    Claytor SC; Gummer JPA; Grogan LF; Skerratt LF; Webb RJ; Brannelly LA; Berger L; Roberts AA
    Cell Microbiol; 2019 Oct; 21(10):e13089. PubMed ID: 31373151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses.
    Woodhams DC; Bigler L; Marschang R
    BMC Vet Res; 2012 Oct; 8():197. PubMed ID: 23088169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bad neighbours: amphibian chytrid fungus Batrachochytrium dendrobatidis infection dynamics in three co-occurring frog species of southern Sydney, Australia.
    Crawford-Ash J; Rowley JJL
    Dis Aquat Organ; 2021 Feb; 143():101-108. PubMed ID: 33570043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovered frog populations coexist with endemic Batrachochytrium dendrobatidis despite load-dependent mortality.
    Hollanders M; Grogan LF; Nock CJ; McCallum HI; Newell DA
    Ecol Appl; 2023 Jan; 33(1):e2724. PubMed ID: 36054297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spread of Amphibian Chytrid Fungus across Lowland Populations of Túngara Frogs in Panamá.
    Rodríguez-Brenes S; Rodriguez D; Ibáñez R; Ryan MJ
    PLoS One; 2016; 11(5):e0155745. PubMed ID: 27176629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian.
    Abu Bakar A; Bower DS; Stockwell MP; Clulow S; Clulow J; Mahony MJ
    Oecologia; 2016 Aug; 181(4):997-1009. PubMed ID: 27021312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.
    Daskin JH; Bell SC; Schwarzkopf L; Alford RA
    PLoS One; 2014; 9(6):e100378. PubMed ID: 24941262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?
    Knutie SA; Gabor CR; Kohl KD; Rohr JR
    J Anim Ecol; 2018 Mar; 87(2):489-499. PubMed ID: 29030867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune evasion or avoidance: fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata.
    Woodhams DC; Bell SC; Kenyon N; Alford RA; Rollins-Smith LA
    Fungal Biol; 2012 Dec; 116(12):1203-11. PubMed ID: 23245614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. White blood cell profiles in amphibians help to explain disease susceptibility following temperature shifts.
    Greenspan SE; Bower DS; Webb RJ; Berger L; Rudd D; Schwarzkopf L; Alford RA
    Dev Comp Immunol; 2017 Dec; 77():280-286. PubMed ID: 28870450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited impact of chytridiomycosis on juvenile frogs in a recovered species.
    Hollanders M; Grogan LF; McCallum HI; Brannelly LA; Newell DA
    Oecologia; 2023 Jun; 202(2):445-454. PubMed ID: 37349661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs.
    Chatfield MW; Richards-Zawacki CL
    Dis Aquat Organ; 2011 May; 94(3):235-8. PubMed ID: 21790070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.