BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25211495)

  • 1. Cellular specificity of the blood-CSF barrier for albumin transfer across the choroid plexus epithelium.
    Liddelow SA; Dzięgielewska KM; Møllgård K; Whish SC; Noor NM; Wheaton BJ; Gehwolf R; Wagner A; Traweger A; Bauer H; Bauer HC; Saunders NR
    PLoS One; 2014; 9(9):e106592. PubMed ID: 25211495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPARC/osteonectin, an endogenous mechanism for targeting albumin to the blood-cerebrospinal fluid interface during brain development.
    Liddelow SA; Dziegielewska KM; Møllgård K; Phoenix TN; Temple S; Vandeberg JL; Saunders NR
    Eur J Neurosci; 2011 Oct; 34(7):1062-73. PubMed ID: 21899600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Albumin transfer across the choroid plexus of South American opossum (Monodelphis domestica).
    Knott GW; Dziegielewska KM; Habgood MD; Li ZS; Saunders NR
    J Physiol; 1997 Feb; 499 ( Pt 1)(Pt 1):179-94. PubMed ID: 9061648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterisation of transport mechanisms at the developing mouse blood-CSF interface: a transcriptome approach.
    Liddelow SA; Temple S; Møllgård K; Gehwolf R; Wagner A; Bauer H; Bauer HC; Phoenix TN; Dziegielewska KM; Saunders NR
    PLoS One; 2012; 7(3):e33554. PubMed ID: 22457777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of protein transfer across blood/cerebrospinal fluid barrier in response to altered plasma protein composition during development.
    Liddelow SA; Dziegielewska KM; VandeBerg JL; Noor NM; Potter AM; Saunders NR
    Eur J Neurosci; 2011 Feb; 33(3):391-400. PubMed ID: 21138490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular transfer of macromolecules across the developing choroid plexus of Monodelphis domestica.
    Liddelow SA; Dziegielewska KM; Ek CJ; Johansson PA; Potter AM; Saunders NR
    Eur J Neurosci; 2009 Jan; 29(2):253-66. PubMed ID: 19200232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species-specific transfer of plasma albumin from blood into different cerebrospinal fluid compartments in the fetal sheep.
    Dziegielewska KM; Habgood MD; Møllgård K; Stagaard M; Saunders NR
    J Physiol; 1991 Aug; 439():215-37. PubMed ID: 1895237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercellular barriers to and transcellular transfer of albumin in the fetal sheep brain.
    Balslev Y; Dziegielewska KM; Møllgård K; Saunders NR
    Anat Embryol (Berl); 1997 Mar; 195(3):229-36. PubMed ID: 9084821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood-CSF barrier function in the rat embryo.
    Johansson PA; Dziegielewska KM; Ek CJ; Habgood MD; Liddelow SA; Potter AM; Stolp HB; Saunders NR
    Eur J Neurosci; 2006 Jul; 24(1):65-76. PubMed ID: 16800861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain.
    Chanoine JP; Alex S; Fang SL; Stone S; Leonard JL; Körhle J; Braverman LE
    Endocrinology; 1992 Feb; 130(2):933-8. PubMed ID: 1733735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leptin transport at the blood--cerebrospinal fluid barrier using the perfused sheep choroid plexus model.
    Thomas SA; Preston JE; Wilson MR; Farrell CL; Segal MB
    Brain Res; 2001 Mar; 895(1-2):283-90. PubMed ID: 11259792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-brain, blood-cerebrospinal fluid and cerebrospinal fluid-brain barriers in a marsupial (Macropus eugenii) during development.
    Dziegielewska KM; Hinds LA; Møllgård K; Reynolds ML; Saunders NR
    J Physiol; 1988 Sep; 403():367-88. PubMed ID: 3075668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of HNF4alpha in the human and rat choroid plexus: implications for drug transport across the blood-cerebrospinal-fluid (CSF) barrier.
    Niehof M; Borlak J
    BMC Mol Biol; 2009 Jul; 10():68. PubMed ID: 19575803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Merging Transport Data for Choroid Plexus with Blood-Brain Barrier to Model CNS Homeostasis and Disease More Effectively.
    Johanson C; Johanson N
    CNS Neurol Disord Drug Targets; 2016; 15(9):1151-1180. PubMed ID: 27633784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium.
    Strazielle N; Creidy R; Malcus C; Boucraut J; Ghersi-Egea JF
    PLoS One; 2016; 11(3):e0150945. PubMed ID: 26942913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IFN-γ-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair.
    Kunis G; Baruch K; Rosenzweig N; Kertser A; Miller O; Berkutzki T; Schwartz M
    Brain; 2013 Nov; 136(Pt 11):3427-40. PubMed ID: 24088808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain.
    Akanuma SI; Yamazaki Y; Kubo Y; Hosoya KI
    Fluids Barriers CNS; 2018 Jan; 15(1):1. PubMed ID: 29307307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse.
    Wolburg H; Wolburg-Buchholz K; Liebner S; Engelhardt B
    Neurosci Lett; 2001 Jul; 307(2):77-80. PubMed ID: 11427304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. I. Choroid plexus and the blood-cerebrospinal fluid barrier.
    Balin BJ; Broadwell RD
    J Neurocytol; 1988 Dec; 17(6):809-26. PubMed ID: 3230399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.