BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25212454)

  • 1. Conserved features and major differences in the outer membrane protein composition of chlamydiae.
    Aistleitner K; Anrather D; Schott T; Klose J; Bright M; Ammerer G; Horn M
    Environ Microbiol; 2015 Apr; 17(4):1397-413. PubMed ID: 25212454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unity in variety--the pan-genome of the Chlamydiae.
    Collingro A; Tischler P; Weinmaier T; Penz T; Heinz E; Brunham RC; Read TD; Bavoil PM; Sachse K; Kahane S; Friedman MG; Rattei T; Myers GS; Horn M
    Mol Biol Evol; 2011 Dec; 28(12):3253-70. PubMed ID: 21690563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae.
    Heinz E; Tischler P; Rattei T; Myers G; Wagner M; Horn M
    BMC Genomics; 2009 Dec; 10():634. PubMed ID: 20040079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral transfers of serine hydroxymethyltransferase (glyA) and UDP-N-acetylglucosamine enolpyruvyl transferase (murA) genes from free-living Actinobacteria to the parasitic chlamydiae.
    Griffiths E; Gupta RS
    J Mol Evol; 2006 Aug; 63(2):283-96. PubMed ID: 16830093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia outer membrane protein discovery using genomics.
    Stephens RS; Lammel CJ
    Curr Opin Microbiol; 2001 Feb; 4(1):16-20. PubMed ID: 11173028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the disulfide bonds and free cysteine residues of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein.
    Yen TY; Pal S; de la Maza LM
    Biochemistry; 2005 Apr; 44(16):6250-6. PubMed ID: 15835913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein signatures distinctive of chlamydial species: horizontal transfers of cell wall biosynthesis genes glmU from archaea to chlamydiae and murA between chlamydiae and Streptomyces.
    Griffiths E; Gupta RS
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2541-2549. PubMed ID: 12177347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification.
    Griffiths E; Petrich AK; Gupta RS
    Microbiology (Reading); 2005 Aug; 151(Pt 8):2647-2657. PubMed ID: 16079343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Waddlia genome: a window into chlamydial biology.
    Bertelli C; Collyn F; Croxatto A; Rückert C; Polkinghorne A; Kebbi-Beghdadi C; Goesmann A; Vaughan L; Greub G
    PLoS One; 2010 May; 5(5):e10890. PubMed ID: 20531937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing diversity within Chlamydiae.
    Corsaro D; Valassina M; Venditti D
    Crit Rev Microbiol; 2003; 29(1):37-78. PubMed ID: 12638718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphic proteins of Chlamydia spp.--autotransporters beyond the Proteobacteria.
    Henderson IR; Lam AC
    Trends Microbiol; 2001 Dec; 9(12):573-8. PubMed ID: 11728862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of the outer membrane of Protochlamydia amoebophila elementary bodies.
    Heinz E; Pichler P; Heinz C; Op den Camp HJ; Toenshoff ER; Ammerer G; Mechtler K; Wagner M; Horn M
    Proteomics; 2010 Dec; 10(24):4363-76. PubMed ID: 21136591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging chlamydial infections.
    Corsaro D; Venditti D
    Crit Rev Microbiol; 2004; 30(2):75-106. PubMed ID: 15239381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic analysis of the outer-membrane-protein genes of Chlamydiae, and its implication for vaccine development.
    Fitch WM; Peterson EM; de la Maza LM
    Mol Biol Evol; 1993 Jul; 10(4):892-913. PubMed ID: 8355605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the major outer-membrane protein (MOMP) gene of mouse pneumonitis (MoPn) and hamster SFPD strains of Chlamydia trachomatis with other Chlamydia strains.
    Zhang YX; Fox JG; Ho Y; Zhang L; Stills HF; Smith TF
    Mol Biol Evol; 1993 Nov; 10(6):1327-42. PubMed ID: 8277858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing target.
    Kubo A; Stephens RS
    Mol Microbiol; 2000 Nov; 38(4):772-80. PubMed ID: 11115112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species.
    Rahman KS; Chowdhury EU; Poudel A; Ruettger A; Sachse K; Kaltenboeck B
    Clin Vaccine Immunol; 2015 May; 22(5):539-52. PubMed ID: 25761461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydial envelope components and pathogen-host cell interactions.
    Raulston JE
    Mol Microbiol; 1995 Feb; 15(4):607-16. PubMed ID: 7783633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly.
    Archuleta TL; Du Y; English CA; Lory S; Lesser C; Ohi MD; Ohi R; Spiller BW
    J Biol Chem; 2011 Sep; 286(39):33992-8. PubMed ID: 21841198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine.
    Kollipara A; Polkinghorne A; Wan C; Kanyoka P; Hanger J; Loader J; Callaghan J; Bell A; Ellis W; Fitzgibbon S; Melzer A; Beagley K; Timms P
    Vet Microbiol; 2013 Dec; 167(3-4):513-22. PubMed ID: 24012135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.