These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25212595)

  • 1. A direct C-H/Ar-H coupling approach to oxindoles, thio-oxindoles, 3,4-dihydro-1 H-quinolin-2-ones, and 1,2,3,4-tetrahydroquinolines.
    Hurst TE; Gorman RM; Drouhin P; Perry A; Taylor RJ
    Chemistry; 2014 Oct; 20(43):14063-73. PubMed ID: 25212595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First C-H activation route to oxindoles using copper catalysis.
    Klein JE; Perry A; Pugh DS; Taylor RJ
    Org Lett; 2010 Aug; 12(15):3446-9. PubMed ID: 20670011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective Synthesis of 3,3-Disubstituted Oxindoles Bearing Two Different Heteroatoms at the C3 Position by Organocatalyzed Sulfenylation and Selenenylation of 3-Pyrrolyl-oxindoles.
    You Y; Wu ZJ; Wang ZH; Xu XY; Zhang XM; Yuan WC
    J Org Chem; 2015 Aug; 80(16):8470-7. PubMed ID: 26252841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxindole synthesis by direct C-H, Ar-H coupling.
    Perry A; Taylor RJ
    Chem Commun (Camb); 2009 Jun; (22):3249-51. PubMed ID: 19587929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-catalyzed aerobic difunctionalization of alkenes: a highly efficient approach to construct oxindoles by C-S and C-C bond formation.
    Shen T; Yuan Y; Song S; Jiao N
    Chem Commun (Camb); 2014 Apr; 50(31):4115-8. PubMed ID: 24622694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-catalyzed oxidative benzylarylation of acrylamides by benzylic C-H bond functionalization for the synthesis of oxindoles.
    Zhou SL; Guo LN; Wang H; Duan XH
    Chemistry; 2013 Sep; 19(39):12970-3. PubMed ID: 24038342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal Pd- and Cu-based catalyst systems for C- and N-arylation of oxindoles.
    Altman RA; Hyde AM; Huang X; Buchwald SL
    J Am Chem Soc; 2008 Jul; 130(29):9613-20. PubMed ID: 18588302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective synthesis of 3-aryl quinolin-2(1H)-ones and 3-(1-arylmethylene)oxindoles involving a 2-fold arene C-H activation process.
    Tang DJ; Tang BX; Li JH
    J Org Chem; 2009 Sep; 74(17):6749-55. PubMed ID: 19653624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-catalyzed domino coupling reaction: an efficient method to synthesize oxindoles.
    Hsieh JC; Cheng AY; Fu JH; Kang TW
    Org Biomol Chem; 2012 Aug; 10(31):6404-9. PubMed ID: 22735645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-mediated and copper-catalyzed cross-coupling of indoles and 1,3-azoles: double C-H activation.
    Nishino M; Hirano K; Satoh T; Miura M
    Angew Chem Int Ed Engl; 2012 Jul; 51(28):6993-7. PubMed ID: 22653812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic resolution of alkyne-substituted quaternary oxindoles via copper catalysed azide-alkyne cycloadditions.
    Brittain WD; Buckley BR; Fossey JS
    Chem Commun (Camb); 2015 Dec; 51(97):17217-20. PubMed ID: 26311134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalyst-free tandem Michael addition/decarboxylation of (thio)coumarin-3-carboxylic acids with indoles: facile synthesis of indole-3-substituted 3,4-dihydro(thio)coumarins.
    Shao Z; Xu L; Wang L; Wei H; Xiao J
    Org Biomol Chem; 2014 Apr; 12(14):2185-8. PubMed ID: 24589942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A facile approach for the asymmetric synthesis of oxindoles with a 3-sulfenyl-substituted quaternary stereocenter.
    Dou X; Zhou B; Yao W; Zhong F; Jiang C; Lu Y
    Org Lett; 2013 Oct; 15(19):4920-3. PubMed ID: 24067143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxindole synthesis by direct coupling of C(sp2)-H and C(sp3)-H centers.
    Jia YX; Kündig EP
    Angew Chem Int Ed Engl; 2009; 48(9):1636-9. PubMed ID: 19170152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation.
    Chen X; Zhu C; Cui X; Wu Y
    Chem Commun (Camb); 2013 Aug; 49(61):6900-2. PubMed ID: 23793162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brønsted acid mediated alkenylation and copper-catalyzed aerobic oxidative ring expansion/intramolecular electrophilic substitution of indoles with propargyl alcohols: a novel one-pot approach to cyclopenta[c]quinolines.
    Gangadhararao G; Uruvakilli A; Swamy KC
    Org Lett; 2014 Dec; 16(23):6060-3. PubMed ID: 25402216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Difluoromethylthiophthalimide: A Shelf-Stable, Electrophilic Reagent for Difluoromethylthiolation.
    Zhu D; Gu Y; Lu L; Shen Q
    J Am Chem Soc; 2015 Aug; 137(33):10547-53. PubMed ID: 26178409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cinchona-based squaramide-catalysed cascade aza-Michael-Michael addition: enantioselective construction of functionalized spirooxindole tetrahydroquinolines.
    Yang W; Du DM
    Chem Commun (Camb); 2013 Oct; 49(78):8842-4. PubMed ID: 23959265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General and efficient copper-catalyzed amidation of saturated C-H bonds using N-halosuccinimides as the oxidants.
    Liu X; Zhang Y; Wang L; Fu H; Jiang Y; Zhao Y
    J Org Chem; 2008 Aug; 73(16):6207-12. PubMed ID: 18593184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-operation deracemization of 3H-indolines and tetrahydroquinolines enabled by phase separation.
    Lackner AD; Samant AV; Toste FD
    J Am Chem Soc; 2013 Sep; 135(38):14090-3. PubMed ID: 24025122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.