These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25212598)

  • 1. Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features.
    Chen Z; Zhou Y; Zhang Z; Song J
    Brief Bioinform; 2015 Jul; 16(4):640-57. PubMed ID: 25212598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in
    Li X; Yuan Z; Chen Y
    Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lysine ubiquitination with mRMR feature selection and analysis.
    Cai Y; Huang T; Hu L; Shi X; Xie L; Li Y
    Amino Acids; 2012 Apr; 42(4):1387-95. PubMed ID: 21267749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Computational Models of Identifying Protein Ubiquitination Sites.
    Wang L; Zhang R
    Curr Drug Targets; 2019; 20(5):565-578. PubMed ID: 30246637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites.
    Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP
    Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards more accurate prediction of protein folding rates: a review of the existing Web-based bioinformatics approaches.
    Chang CC; Tey BT; Song J; Ramanan RN
    Brief Bioinform; 2015 Mar; 16(2):314-24. PubMed ID: 24621527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture.
    He F; Wang R; Li J; Bao L; Xu D; Zhao X
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):109. PubMed ID: 30463553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of protein ubiquitination sites mapping on Arabidopsis thaliana.
    Mosharaf MP; Hassan MM; Ahmed FF; Khatun MS; Moni MA; Mollah MNH
    Comput Biol Chem; 2020 Apr; 85():107238. PubMed ID: 32114285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.
    Gao J; Thelen JJ; Dunker AK; Xu D
    Mol Cell Proteomics; 2010 Dec; 9(12):2586-600. PubMed ID: 20702892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Review of In silico Analysis for Protein S-sulfenylation Sites.
    Hasan MM; Khatun MS; Kurata H
    Protein Pept Lett; 2018; 25(9):815-821. PubMed ID: 30182830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical Comparison and Analysis of Web-Based DNA
    Manavalan B; Hasan MM; Basith S; Gosu V; Shin TH; Lee G
    Mol Ther Nucleic Acids; 2020 Dec; 22():406-420. PubMed ID: 33230445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. It's Time for Some "Site"-Seeing: Novel Tools to Monitor the Ubiquitin Landscape in Arabidopsis thaliana.
    Walton A; Stes E; Cybulski N; Van Bel M; IƱigo S; Durand AN; Timmerman E; Heyman J; Pauwels L; De Veylder L; Goossens A; De Smet I; Coppens F; Goormachtig S; Gevaert K
    Plant Cell; 2016 Jan; 28(1):6-16. PubMed ID: 26744219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of different computational methods on 5-methylcytosine sites identification.
    Lv H; Zhang ZM; Li SH; Tan JX; Chen W; Lin H
    Brief Bioinform; 2020 May; 21(3):982-995. PubMed ID: 31157855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PseU-ST: A new stacked ensemble-learning method for identifying RNA pseudouridine sites.
    Zhang X; Wang S; Xie L; Zhu Y
    Front Genet; 2023; 14():1121694. PubMed ID: 36741328
    [No Abstract]   [Full Text] [Related]  

  • 16. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.
    Wen PP; Shi SP; Xu HD; Wang LN; Qiu JD
    Bioinformatics; 2016 Oct; 32(20):3107-3115. PubMed ID: 27354692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection.
    Song J; Wang H; Wang J; Leier A; Marquez-Lago T; Yang B; Zhang Z; Akutsu T; Webb GI; Daly RJ
    Sci Rep; 2017 Jul; 7(1):6862. PubMed ID: 28761071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory.
    Xue Y; Li A; Wang L; Feng H; Yao X
    BMC Bioinformatics; 2006 Mar; 7():163. PubMed ID: 16549034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Scheme to Characterize and Identify Protein Ubiquitination Sites.
    Nguyen VN; Huang KY; Huang CH; Lai KR; Lee TY
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):393-403. PubMed ID: 26887002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.