BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 25212638)

  • 41. Influence of drug load on dissolution behavior of tablets containing a poorly water-soluble drug: estimation of the percolation threshold.
    Wenzel T; Stillhart C; Kleinebudde P; Szepes A
    Drug Dev Ind Pharm; 2017 Aug; 43(8):1265-1275. PubMed ID: 28398095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction.
    Souihi N; Dumarey M; Wikström H; Tajarobi P; Fransson M; Svensson O; Josefson M; Trygg J
    Int J Pharm; 2013 Apr; 447(1-2):47-61. PubMed ID: 23434544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roll compaction process modeling: transfer between equipment and impact of process parameters.
    Souihi N; Reynolds G; Tajarobi P; Wikström H; Haeffler G; Josefson M; Trygg J
    Int J Pharm; 2015 Apr; 484(1-2):192-206. PubMed ID: 25701630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improving the content uniformity of a low-dose tablet formulation through roller compaction optimization.
    am Ende MT; Moses SK; Carella AJ; Gadkari RA; Graul TW; Otano AL; Timpano RJ
    Pharm Dev Technol; 2007; 12(4):391-404. PubMed ID: 17763144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of roller compaction settings on the preparation of bioadhesive granules and ocular minitablets.
    Weyenberg W; Vermeire A; Vandervoort J; Remon JP; Ludwig A
    Eur J Pharm Biopharm; 2005 Apr; 59(3):527-36. PubMed ID: 15760734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using a Model-based Material Sparing Approach for Formulation and Process Development of a Roller Compacted Drug Product.
    Vasudevan KV; Pu YE; Amini H; Guarino C; Agrawal A; Akseli I
    Pharm Res; 2022 Sep; 39(9):2083-2093. PubMed ID: 35218443
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of the critical factors affecting the porosity of roller compacted ribbons and the feasibility of using NIR chemical imaging to evaluate the porosity distribution.
    Lim H; Dave VS; Kidder L; Neil Lewis E; Fahmy R; Hoag SW
    Int J Pharm; 2011 May; 410(1-2):1-8. PubMed ID: 21371542
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roll compaction/dry granulation: Suitability of different binders.
    Mangal H; Kirsolak M; Kleinebudde P
    Int J Pharm; 2016 Apr; 503(1-2):213-9. PubMed ID: 26976499
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.
    Markl D; Bawuah P; Ridgway C; van den Ban S; Goodwin DJ; Ketolainen J; Gane P; Peiponen KE; Zeitler JA
    Int J Pharm; 2018 Feb; 537(1-2):102-110. PubMed ID: 29247699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-infrared spectroscopic analysis of the breaking force of extended-release matrix tablets prepared by roller-compaction: influence of plasticizer levels and sintering temperature.
    Dave VS; Fahmy RM; Hoag SW
    Drug Dev Ind Pharm; 2015 Jun; 41(6):898-905. PubMed ID: 24785574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of roller compaction and fines recycling process in the preparation of erlotinib hydrochloride tablets.
    Hwang KM; Kim SY; Nguyen TT; Cho CH; Park ES
    Eur J Pharm Sci; 2019 Apr; 131():99-110. PubMed ID: 30716380
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating.
    Kunnath K; Huang Z; Chen L; Zheng K; Davé R
    Int J Pharm; 2018 May; 543(1-2):288-299. PubMed ID: 29625168
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of feeding guiders to improve the powder distribution in the two scales of roller compactors.
    Yu M; Weidemann M; Omar CS; Schmidt A; Litster JD; Salman AD
    Int J Pharm; 2020 Jan; 573():118815. PubMed ID: 31751637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systematical approach of formulation and process development using roller compaction.
    Teng Y; Qiu Z; Wen H
    Eur J Pharm Biopharm; 2009 Oct; 73(2):219-29. PubMed ID: 19406236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving the compaction properties of roller compacted calcium carbonate.
    Bacher C; Olsen PM; Bertelsen P; Kristensen J; Sonnergaard JM
    Int J Pharm; 2007 Sep; 342(1-2):115-23. PubMed ID: 17582712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time near-infrared monitoring of content uniformity, moisture content, compact density, tensile strength, and Young's modulus of roller compacted powder blends.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Jul; 94(7):1589-97. PubMed ID: 15924348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of feed material properties on the milling of pharmaceutical ribbons: A PBM analysis.
    Olaleye B; Wu CY; Liu LX
    Int J Pharm; 2020 Nov; 590():119954. PubMed ID: 33039493
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of multivariate methods to compression behavior evaluation of directly compressible materials.
    Haware RV; Tho I; Bauer-Brandl A
    Eur J Pharm Biopharm; 2009 May; 72(1):148-55. PubMed ID: 19084596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The evaluation of fine-particle hydroxypropylcellulose as a roller compaction binder in pharmaceutical applications.
    Skinner GW; Harcum WW; Barnum PE; Guo JH
    Drug Dev Ind Pharm; 1999 Oct; 25(10):1121-8. PubMed ID: 10529893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.