These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 25212866)
1. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition. Rodríguez-Rodríguez MF; Salas JJ; Garcés R; Martínez-Force E Phytochemistry; 2014 Nov; 107():7-15. PubMed ID: 25212866 [TBL] [Abstract][Full Text] [Related]
2. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Sánchez-García A; Moreno-Pérez AJ; Muro-Pastor AM; Salas JJ; Garcés R; Martínez-Force E Phytochemistry; 2010 Jun; 71(8-9):860-9. PubMed ID: 20382402 [TBL] [Abstract][Full Text] [Related]
3. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition. Moreno-Pérez AJ; Sánchez-García A; Salas JJ; Garcés R; Martínez-Force E Plant Physiol Biochem; 2011 Jan; 49(1):82-7. PubMed ID: 21071236 [TBL] [Abstract][Full Text] [Related]
4. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Hawkins DJ; Kridl JC Plant J; 1998 Mar; 13(6):743-52. PubMed ID: 9681015 [TBL] [Abstract][Full Text] [Related]
5. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities. Aznar-Moreno JA; Venegas-Calerón M; Martínez-Force E; Garcés R; Salas JJ Planta; 2016 Aug; 244(2):479-90. PubMed ID: 27095109 [TBL] [Abstract][Full Text] [Related]
6. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Salas JJ; Ohlrogge JB Arch Biochem Biophys; 2002 Jul; 403(1):25-34. PubMed ID: 12061798 [TBL] [Abstract][Full Text] [Related]
7. Heterologous Expression of Liu Y; Han J; Li Z; Jiang Z; Luo L; Zhang Y; Chen M; Yang Y; Liu Z Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457027 [TBL] [Abstract][Full Text] [Related]
8. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds. Kim HJ; Silva JE; Vu HS; Mockaitis K; Nam JW; Cahoon EB J Exp Bot; 2015 Jul; 66(14):4251-65. PubMed ID: 25969557 [TBL] [Abstract][Full Text] [Related]
9. Cloning, characterization, and expression analysis of acyl-acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis). Dong S; Huang J; Li Y; Zhang J; Lin S; Zhang Z Gene; 2014 May; 542(1):16-22. PubMed ID: 24631366 [TBL] [Abstract][Full Text] [Related]
10. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia). Ghosh SK; Bhattacharjee A; Jha JK; Mondal AK; Maiti MK; Basu A; Ghosh D; Ghosh S; Sen SK Plant Physiol Biochem; 2007 Dec; 45(12):887-97. PubMed ID: 17977002 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the acyl-ACP thioesterases from Martins-Noguerol R; DeAndrés-Gil C; Garcés R; Salas JJ; Martínez-Force E; Moreno-Pérez AJ Heliyon; 2020 Oct; 6(10):e05237. PubMed ID: 33102858 [No Abstract] [Full Text] [Related]
12. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Jones A; Davies HM; Voelker TA Plant Cell; 1995 Mar; 7(3):359-71. PubMed ID: 7734968 [TBL] [Abstract][Full Text] [Related]
13. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Moreno-Pérez AJ; Venegas-Calerón M; Vaistij FE; Salas JJ; Larson TR; Garcés R; Graham IA; Martínez-Force E Planta; 2012 Mar; 235(3):629-39. PubMed ID: 22002626 [TBL] [Abstract][Full Text] [Related]
14. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607 [TBL] [Abstract][Full Text] [Related]
15. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Martínez-Force E; Cantisán S; Serrano-Vega MJ; Garcés R Planta; 2000 Oct; 211(5):673-8. PubMed ID: 11089680 [TBL] [Abstract][Full Text] [Related]
16. Cloning and characterization of cDNAs encoding for long-chain saturated acyl-ACP thioesterases from the developing seeds of Brassica juncea. Jha SS; Jha JK; Chattopadhyaya B; Basu A; Sen SK; Maiti MK Plant Physiol Biochem; 2010 Jun; 48(6):476-80. PubMed ID: 20356753 [TBL] [Abstract][Full Text] [Related]
17. Identification of novel acyl-ACP thioesterase gene ClFATB1 from Cinnamomum longepaniculatum. Lin N; Ai TB; Gao JH; Fan LH; Wang SH; Chen F Biochemistry (Mosc); 2013 Nov; 78(11):1298-303. PubMed ID: 24460945 [TBL] [Abstract][Full Text] [Related]
18. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Serrano-Vega MJ; Garcés R; Martínez-Force E Planta; 2005 Aug; 221(6):868-80. PubMed ID: 15841386 [TBL] [Abstract][Full Text] [Related]
19. Characterization of soluble acyl-ACP desaturases from Camelina sativa, Macadamia tetraphylla and Dolichandra unguis-cati. Rodríguez MF; Sánchez-García A; Salas JJ; Garcés R; Martínez-Force E J Plant Physiol; 2015 Apr; 178():35-42. PubMed ID: 25765361 [TBL] [Abstract][Full Text] [Related]
20. Improved fatty acid profiles in seeds of Camelina sativa by artificial microRNA mediated FATB gene suppression. Ozseyhan ME; Li P; Na G; Li Z; Wang C; Lu C Biochem Biophys Res Commun; 2018 Sep; 503(2):621-624. PubMed ID: 29906463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]