BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 25212866)

  • 21. Deposition of stearate-oleate rich seed fat in Mangifera indica is mediated by a FatA type acyl-ACP thioesterase.
    Bhattacharjee A; Ghosh SK; Neogi K; Aich A; Willard B; Kinter M; Sen SK; Ghosh D; Ghosh S
    Phytochemistry; 2011 Feb; 72(2-3):166-77. PubMed ID: 21130480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.
    Zhang X; Li M; Agrawal A; San KY
    Metab Eng; 2011 Nov; 13(6):713-22. PubMed ID: 22001432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis.
    Suh MC; Schultz DJ; Ohlrogge JB
    Plant J; 1999 Mar; 17(6):679-88. PubMed ID: 10366274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases.
    Leonard JM; Knapp SJ; Slabaugh MB
    Plant J; 1998 Mar; 13(5):621-8. PubMed ID: 9681004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.
    Dehesh K; Edwards P; Hayes T; Cranmer AM; Fillatti J
    Plant Physiol; 1996 Jan; 110(1):203-10. PubMed ID: 8587983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds.
    Voelker TA; Jones A; Cranmer AM; Davies HM; Knutzon DS
    Plant Physiol; 1997 Jun; 114(2):669-77. PubMed ID: 9193098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants.
    Kalinger RS; Rowland O
    BMC Plant Biol; 2023 Jan; 23(1):1. PubMed ID: 36588156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.
    Moreno-Pérez AJ; Venegas-Calerón M; Vaistij FE; Salas JJ; Larson TR; Garcés R; Graham IA; Martínez-Force E
    Planta; 2014 Mar; 239(3):667-77. PubMed ID: 24327259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of C6-C14 Medium-Chain Fatty Acids in Seeds and Leaves via Overexpression of Single Hotdog-Fold Acyl-Lipid Thioesterases.
    Kalinger RS; Williams D; Ahmadi Pirshahid A; Pulsifer IP; Rowland O
    Lipids; 2021 May; 56(3):327-344. PubMed ID: 33547664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli.
    Jha JK; Maiti MK; Bhattacharjee A; Basu A; Sen PC; Sen SK
    Plant Physiol Biochem; 2006; 44(11-12):645-55. PubMed ID: 17092734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth.
    Bonaventure G; Salas JJ; Pollard MR; Ohlrogge JB
    Plant Cell; 2003 Apr; 15(4):1020-33. PubMed ID: 12671095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and Functional Characterization of Acyl-ACP Thioesterases B (GhFatBs) Responsible for Palmitic Acid Accumulation in Cotton Seeds.
    Liu B; Sun Y; Wang X; Xue J; Wang J; Jia X; Li R
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.
    Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R
    PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas.
    Dani KG; Hatti KS; Ravikumar P; Kush A
    Plant Biol (Stuttg); 2011 May; 13(3):453-61. PubMed ID: 21489096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.
    Jing F; Cantu DC; Tvaruzkova J; Chipman JP; Nikolau BJ; Yandeau-Nelson MD; Reilly PJ
    BMC Biochem; 2011 Aug; 12():44. PubMed ID: 21831316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibitors of fatty acid biosynthesis in sunflower seeds.
    Pleite R; Martínez-Force E; Garcés R
    J Plant Physiol; 2006 Sep; 163(9):885-94. PubMed ID: 16500723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modification of the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering.
    Yuan L; Voelker TA; Hawkins DJ
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10639-43. PubMed ID: 7479856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.
    Lee S; Park S; Park C; Pack SP; Lee J
    Enzyme Microb Technol; 2014 Dec; 67():8-16. PubMed ID: 25442943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr.
    Gan Y; Song Y; Chen Y; Liu H; Yang D; Xu Q; Zheng Z
    BMC Plant Biol; 2018 Nov; 18(1):303. PubMed ID: 30477425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.