These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25212992)

  • 1. Novel methods and approaches to acute lymphoblastic leukemia drug discovery.
    Wei MC; Cleary ML
    Expert Opin Drug Discov; 2014 Dec; 9(12):1435-46. PubMed ID: 25212992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New strategies in acute lymphoblastic leukemia: translating advances in genomics into clinical practice.
    Mullighan CG
    Clin Cancer Res; 2011 Feb; 17(3):396-400. PubMed ID: 21149616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Philadelphia chromosome-negative acute lymphoblastic leukemia: therapies under development.
    Parikh SA; Litzow MR
    Future Oncol; 2014 Nov; 10(14):2201-12. PubMed ID: 25471034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an understanding of the biology and targeted treatment of paediatric relapsed acute lymphoblastic leukaemia.
    Irving JA
    Br J Haematol; 2016 Mar; 172(5):655-66. PubMed ID: 26568036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic analysis of acute leukemia.
    Mullighan CG
    Int J Lab Hematol; 2009 Aug; 31(4):384-97. PubMed ID: 19486196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profiling identifies BAX-delta as a novel tumor antigen in acute lymphoblastic leukemia.
    Maia S; Haining WN; Ansén S; Xia Z; Armstrong SA; Seth NP; Ghia P; den Boer ML; Pieters R; Sallan SE; Nadler LM; Cardoso AA
    Cancer Res; 2005 Nov; 65(21):10050-8. PubMed ID: 16267031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic alterations targeting lymphoid development in acute lymphoblastic leukemia.
    Collins-Underwood JR; Mullighan CG
    Curr Top Dev Biol; 2011; 94():171-96. PubMed ID: 21295687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter methylation-mediated inactivation of PCDH10 in acute lymphoblastic leukemia contributes to chemotherapy resistance.
    Narayan G; Freddy AJ; Xie D; Liyanage H; Clark L; Kisselev S; Un Kang J; Nandula SV; McGuinn C; Subramaniyam S; Alobeid B; Satwani P; Savage D; Bhagat G; Murty VV
    Genes Chromosomes Cancer; 2011 Dec; 50(12):1043-53. PubMed ID: 21960365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia.
    Steinberg M
    Clin Ther; 2007 Nov; 29(11):2289-308. PubMed ID: 18158072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia.
    Hales EC; Taub JW; Matherly LH
    Cell Signal; 2014 Jan; 26(1):149-61. PubMed ID: 24140475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel monoclonal antibody, KOR-SA3544 which reacts to Philadelphia chromosome-positive acute lymphoblastic leukemia cells with high sensitivity.
    Mori T; Sugita K; Suzuki T; Okazaki T; Manabe A; Hosoya R; Mizutani S; Kinoshita A; Nakazawa S
    Leukemia; 1995 Jul; 9(7):1233-9. PubMed ID: 7543176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular-based and antibody-based targeted pharmacological approaches in childhood acute lymphoblastic leukemia.
    Tardif M; Souza A; Krajinovic M; Bittencourt H; Tran TH
    Expert Opin Pharmacother; 2021 Oct; 22(14):1871-1887. PubMed ID: 34011251
    [No Abstract]   [Full Text] [Related]  

  • 13. Drug discovery in academic institutions.
    Frye SV
    Hematology Am Soc Hematol Educ Program; 2013; 2013():300-5. PubMed ID: 24319195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How new advances in genetic analysis are influencing the understanding and treatment of childhood acute leukemia.
    Roberts KG; Mullighan CG
    Curr Opin Pediatr; 2011 Feb; 23(1):34-40. PubMed ID: 21169835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA methylation and miRNA expression profiling in childhood B-cell acute lymphoblastic leukemia.
    Chatterton Z; Morenos L; Saffery R; Craig JM; Ashley D; Wong NC
    Epigenomics; 2010 Oct; 2(5):697-708. PubMed ID: 22122053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of the incidence and clinical relevance of myeloid antigen-positive acute lymphoblastic leukemia.
    Drexler HG; Thiel E; Ludwig WD
    Leukemia; 1991 Aug; 5(8):637-45. PubMed ID: 1886419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Therapies in Acute Lymphoblastic Leukemia.
    Phelan KW; Advani AS
    Curr Hematol Malig Rep; 2018 Aug; 13(4):289-299. PubMed ID: 30078158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacogenetics of childhood acute lymphoblastic leukemia.
    Lopez-Lopez E; Gutierrez-Camino A; Bilbao-Aldaiturriaga N; Pombar-Gomez M; Martin-Guerrero I; Garcia-Orad A
    Pharmacogenomics; 2014 Jul; 15(10):1383-98. PubMed ID: 25155938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biology of acute lymphoblastic leukemia (ALL): clinical and therapeutic relevance.
    Graux C
    Transfus Apher Sci; 2011 Apr; 44(2):183-9. PubMed ID: 21354375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Philadelphia chromosome-positive mixed phenotype acute leukemia in the imatinib era.
    Shimizu H; Yokohama A; Hatsumi N; Takada S; Handa H; Sakura T; Nojima Y
    Eur J Haematol; 2014 Oct; 93(4):297-301. PubMed ID: 24750307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.