These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25213106)

  • 1. A study of the ice-water interface using the TIP4P/2005 water model.
    Benet J; MacDowell LG; Sanz E
    Phys Chem Chem Phys; 2014 Oct; 16(40):22159-66. PubMed ID: 25213106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.
    Benet J; MacDowell LG; Sanz E
    J Chem Phys; 2015 Apr; 142(13):134706. PubMed ID: 25854257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous ice nucleation evaluated for several water models.
    Espinosa JR; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2014 Nov; 141(18):18C529. PubMed ID: 25399194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation.
    Conde MM; Vega C; Patrykiejew A
    J Chem Phys; 2008 Jul; 129(1):014702. PubMed ID: 18624491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation.
    Feng X; Laird BB
    J Chem Phys; 2006 Jan; 124(4):044707. PubMed ID: 16460200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs-Cahn integration.
    Laird BB; Davidchack RL; Yang Y; Asta M
    J Chem Phys; 2009 Sep; 131(11):114110. PubMed ID: 19778103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting temperature of ice Ih calculated from coexisting solid-liquid phases.
    Wang J; Yoo S; Bai J; Morris JR; Zeng XC
    J Chem Phys; 2005 Jul; 123(3):36101. PubMed ID: 16080767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of fluctuations in supercooled TIP4P/2005 water.
    Overduin SD; Patey GN
    J Chem Phys; 2013 May; 138(18):184502. PubMed ID: 23676051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.
    Slovák J; Tanaka H
    J Chem Phys; 2005 May; 122(20):204512. PubMed ID: 15945757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy in geometrically rough structure of ice prismatic plane interface during growth: Development of a modified six-site model of H
    Nada H
    J Chem Phys; 2016 Dec; 145(24):244706. PubMed ID: 28049310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular dynamics study of water nucleation using the TIP4P/2005 model.
    Pérez A; Rubio A
    J Chem Phys; 2011 Dec; 135(24):244505. PubMed ID: 22225167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface.
    Smith EJ; Bryk T; Haymet AD
    J Chem Phys; 2005 Jul; 123(3):34706. PubMed ID: 16080754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.