BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25213112)

  • 1. Quantum chemical studies on three novel 1,2,4-triazole N-oxides as potential insensitive high explosives.
    Wu Q; Zhu W; Xiao H
    J Mol Model; 2014 Sep; 20(9):2441. PubMed ID: 25213112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching for a new family of insensitive high explosives by introducing N hybridization and N-oxides into a cage cubane.
    Wu Q; Zhu W; Xiao H
    J Mol Model; 2014 Nov; 20(11):2483. PubMed ID: 25316345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.
    Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM
    J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of dinitro-bis-1,2,4-triazole-1,1'-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides.
    Dippold AA; Klapötke TM
    J Am Chem Soc; 2013 Jul; 135(26):9931-8. PubMed ID: 23763597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.
    Chatterjee S; Deb U; Datta S; Walther C; Gupta DK
    Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insensitive High-Energy Density Materials Based on Azazole-Rich Rings: 1,2,4-Triazole
    Yang X; Li N; Li Y; Pang S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation on the heats of formation and detonation performance in polydinitroaminocubanes.
    Chi W; Wang X; Li B; Wu H
    J Mol Model; 2012 Sep; 18(9):4217-23. PubMed ID: 22552754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum chemical studies on the aminopolynitropyrazoles.
    Ravi P; Gore GM; Tewari SP; Sikder AK
    J Mol Model; 2011 Oct; 17(10):2475-84. PubMed ID: 21193942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies on the structures and detonation properties of nitramine explosives containing benzene ring.
    Zhao G; Lu M
    J Mol Model; 2012 Jun; 18(6):2443-51. PubMed ID: 22009302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitro and dinitroamino N-oxides of octaazaanthracene as high energy materials.
    Upadhyay MK; Sengupta SK; Singh HJ
    J Mol Model; 2015 Jan; 21(1):18. PubMed ID: 25617209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Density Energetic Metal-Organic Frameworks Based on the 5,5'-Dinitro-2H,2'H-3,3'-bi-1,2,4-triazole.
    Dong Y; Peng P; Hu B; Su H; Li S; Pang S
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28672873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation on the structure and performance of N, N'-azobis-polynitrodiazoles.
    Jing M; Li H; Wang J; Shu Y; Zhang X; Ma Q; Huang Y
    J Mol Model; 2014 Apr; 20(4):2155. PubMed ID: 24633767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical studies on the heats of formation, densities, and detonation properties of substituted s-tetrazine compounds.
    Zhou Y; Long X; Shu Y
    J Mol Model; 2010 May; 16(5):1021-7. PubMed ID: 19911205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on a new high energy density compound 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO).
    Wang T; Zheng C; Yang J; Zhang X; Gong X; Xia M
    J Mol Model; 2014 Jun; 20(6):2261. PubMed ID: 24859447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation.
    Hang GY; Yu WL; Wang T; Wang JT
    J Mol Model; 2019 Jan; 25(1):10. PubMed ID: 30603804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of detonation performance of CHNO and CHNOAl explosives through molecular structure.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):1296-301. PubMed ID: 19157709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance.
    Pang WQ; Wang K; Zhang W; Luca LT; Fan XZ; Li JQ
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32962224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical studies on the structure and detonation properties of amino-, methyl-, and nitro-substituted 3,4,5-trinitro-1H-pyrazoles.
    Ravi P; Gore GM; Venkatesan V; Tewari SP; Sikder AK
    J Hazard Mater; 2010 Nov; 183(1-3):859-65. PubMed ID: 20728272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.
    Zhu W; Xiao J; Ji G; Zhao F; Xiao H
    J Phys Chem B; 2007 Nov; 111(44):12715-22. PubMed ID: 17929963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions.
    Boparai HK; Comfort SD; Satapanajaru T; Szecsody JE; Grossl PR; Shea PJ
    Chemosphere; 2010 May; 79(8):865-72. PubMed ID: 20226494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.