BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 25213235)

  • 1. Yeast transformation by the LiAc/SS carrier DNA/PEG method.
    Gietz RD
    Methods Mol Biol; 2014; 1205():1-12. PubMed ID: 25213235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism.
    Kawai S; Hashimoto W; Murata K
    Bioeng Bugs; 2010; 1(6):395-403. PubMed ID: 21468206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure.
    Gietz RD; Schiestl RH; Willems AR; Woods RA
    Yeast; 1995 Apr; 11(4):355-60. PubMed ID: 7785336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier.
    Schiestl RH; Gietz RD
    Curr Genet; 1989 Dec; 16(5-6):339-46. PubMed ID: 2692852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of intact yeast cells treated with alkali cations.
    Ito H; Fukuda Y; Murata K; Kimura A
    J Bacteriol; 1983 Jan; 153(1):163-8. PubMed ID: 6336730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex
    Finnigan GC; Thorner J
    Bio Protoc; 2015; 5(13):. PubMed ID: 26523287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling.
    Yu SC; Kuemmel F; Skoufou-Papoutsaki MN; Spanu PD
    Microbiologyopen; 2019 May; 8(5):e00730. PubMed ID: 30311441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient supplements boost yeast transformation efficiency.
    Yu SC; Dawson A; Henderson AC; Lockyer EJ; Read E; Sritharan G; Ryan M; Sgroi M; Ngou PM; Woodruff R; Zhang R; Ren Teen Chia T; Liu Y; Xiang Y; Spanu PD
    Sci Rep; 2016 Oct; 6():35738. PubMed ID: 27760994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved protocol for the preparation of yeast cells for transformation by electroporation.
    Thompson JR; Register E; Curotto J; Kurtz M; Kelly R
    Yeast; 1998 Apr; 14(6):565-71. PubMed ID: 9605506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency transformation of E. coli by high voltage electroporation.
    Dower WJ; Miller JF; Ragsdale CW
    Nucleic Acids Res; 1988 Jul; 16(13):6127-45. PubMed ID: 3041370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics and Functional Analysis of OsASMT1 Gene in Response to Abiotic Stress.
    Li M; Wu L; Shi Y; Wu L; Afzal F; Jia Y; Huang Y; Hu B; Chen J; Huang J
    Biochem Genet; 2024 Apr; ():. PubMed ID: 38582819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing the scale of synthetic biology via cross-species transfer of cellular functions enabled by iModulon engraftment.
    Choe D; Olson CA; Szubin R; Yang H; Sung J; Feist AM; Palsson BO
    Nat Commun; 2024 Mar; 15(1):2356. PubMed ID: 38490991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ-dependent mechanism.
    Al-Zain AM; Nester MR; Ahmed I; Symington LS
    Nat Commun; 2023 Nov; 14(1):7020. PubMed ID: 37919272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological inducers of the yeast filamentous growth pathway reveal environment-dependent roles for pathway components.
    Vandermeulen MD; Cullen PJ
    mSphere; 2023 Oct; 8(5):e0028423. PubMed ID: 37732804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximizing protein production by keeping cells at optimal secretory stress levels using real-time control approaches.
    Sosa-Carrillo S; Galez H; Napolitano S; Bertaux F; Batt G
    Nat Commun; 2023 May; 14(1):3028. PubMed ID: 37231013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Dissection of Budding Yeast PCNA Mutations Responsible for the Regulated Recruitment of Srs2 Helicase.
    Fan L; Zhang W; Rybchuk J; Luo Y; Xiao W
    mBio; 2023 Apr; 14(2):e0031523. PubMed ID: 36861970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a Conserved Function of Eukaryotic Pantothenate Kinases in the Regulation of Mitochondrial Homeostasis and Oxidative Stress.
    Ceccatelli Berti C; Gihaz S; Figuccia S; Choi JY; Pal AC; Goffrini P; Ben Mamoun C
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the Functional Interactome of Spliceosome-Associated G-Patch Protein Gpl1 in the Fission Yeast
    Selicky T; Jurcik M; Mikolaskova B; Pitelova A; Mayerova N; Kretova M; Osadska M; Jurcik J; Holic R; Kohutova L; Bellova J; Benko Z; Gregan J; Bagelova Polakova S; Barath P; Cipak L; Cipakova I
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput genetic screening of meiotic commitment using fluorescence microscopy in 
    Gavade JN; Lacefield S
    STAR Protoc; 2022 Dec; 3(4):101797. PubMed ID: 36325582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Validated Set of Ascorbate Peroxidase-Based Organelle Markers for Electron Microscopy of Saccharomyces cerevisiae.
    Li H; He CW; Zhu J; Xie Z
    mSphere; 2022 Aug; 7(4):e0010722. PubMed ID: 35727034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.