BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25213255)

  • 1. Metabolomic and lipidomic analyses of chronologically aging yeast.
    Richard VR; Bourque SD; Titorenko VI
    Methods Mol Biol; 2014; 1205():359-73. PubMed ID: 25213255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.
    Ohta E; Nakayama Y; Mukai Y; Bamba T; Fukusaki E
    J Biosci Bioeng; 2016 Apr; 121(4):399-405. PubMed ID: 26344121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format.
    Ewald JC; Heux S; Zamboni N
    Anal Chem; 2009 May; 81(9):3623-9. PubMed ID: 19320491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling.
    Kim S; Kim J; Song JH; Jung YH; Choi IS; Choi W; Park YC; Seo JH; Kim KH
    Biotechnol J; 2016 Sep; 11(9):1221-9. PubMed ID: 27313052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells.
    Mohler RE; Dombek KM; Hoggard JC; Young ET; Synovec RE
    Anal Chem; 2006 Apr; 78(8):2700-9. PubMed ID: 16615782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc.
    Wan C; Zhang M; Fang Q; Xiong L; Zhao X; Hasunuma T; Bai F; Kondo A
    Metallomics; 2015 Feb; 7(2):322-32. PubMed ID: 25554248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach.
    Li H; Ma ML; Luo S; Zhang RM; Han P; Hu W
    Int J Biochem Cell Biol; 2012 Jul; 44(7):1087-96. PubMed ID: 22504284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors.
    Casatta N; Porro A; Orlandi I; Brambilla L; Vai M
    Biochim Biophys Acta; 2013 Mar; 1833(3):593-601. PubMed ID: 23159490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample preparation related to the intracellular metabolome of yeast methods for quenching, extraction, and metabolite quantitation.
    Dunn WB; Winder CL
    Methods Enzymol; 2011; 500():277-97. PubMed ID: 21943903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic lipidomic insights into the adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Zhou X; Zhou J; Tian H; Yuan Y
    OMICS; 2010 Oct; 14(5):563-74. PubMed ID: 20955009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Role of trehalose and glycogen in the survival of aging Saccharomyces cerevisiae cells].
    Samokhvalov VA; Mel'nikov GV; Ignatov VV
    Mikrobiologiia; 2004; 73(4):449-54. PubMed ID: 15521168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomics in Yeast.
    Caudy AA; Mülleder M; Ralser M
    Cold Spring Harb Protoc; 2017 Sep; 2017(9):pdb.top083576. PubMed ID: 28864573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reserve carbohydrates maintain the viability of Saccharomyces cerevisiae cells during chronological aging.
    Samokhvalov V; Ignatov V; Kondrashova M
    Mech Ageing Dev; 2004 Mar; 125(3):229-35. PubMed ID: 15013667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the quantification of lipid-related extracellular metabolites in Saccharomyces cerevisiae.
    Sun T; Wetzel SJ; Johnson ME; Surlow BA; Patton-Vogt J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 May; 897():1-9. PubMed ID: 22541168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process.
    Zhang J; Reddy J; Buckland B; Greasham R
    Biotechnol Bioeng; 2003 Jun; 82(6):640-52. PubMed ID: 12673763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomic study of the fever model induced by baker's yeast and the antipyretic effects of aspirin in rats using nuclear magnetic resonance and gas chromatography-mass spectrometry.
    Zhang F; Wang D; Li X; Li Z; Chao J; Qin X
    J Pharm Biomed Anal; 2013; 81-82():168-77. PubMed ID: 23670098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putting the 'Ome' in lipid metabolism.
    Mutch DM; Fauconnot L; Grigorov M; Fay LB
    Biotechnol Annu Rev; 2006; 12():67-84. PubMed ID: 17045192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the Underlying Metabolomic and Lipidomic Patterns Linked to Thermal Acclimation in Saccharomyces cerevisiae.
    Puig-Castellví F; Bedia C; Alfonso I; Piña B; Tauler R
    J Proteome Res; 2018 Jun; 17(6):2034-2044. PubMed ID: 29707950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation.
    Satomura A; Katsuyama Y; Miura N; Kuroda K; Tomio A; Bamba T; Fukusaki E; Ueda M
    Biotechnol Prog; 2013; 29(5):1116-23. PubMed ID: 24115578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems.
    Kamleh MA; Dow JA; Watson DG
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):28-48. PubMed ID: 19074496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.