BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25213263)

  • 1. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.
    Manninen AL; Kotiaho A; Nikkinen J; Nieminen MT
    Radiat Prot Dosimetry; 2015 Apr; 164(3):361-7. PubMed ID: 25213263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a MOSFET radiation sensor for the measurement of entrance surface dose in diagnostic radiology.
    Peet DJ; Pryor MD
    Br J Radiol; 1999 Jun; 72(858):562-8. PubMed ID: 10560338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential clinical utility of a fibre optic-coupled dosemeter for dose measurements in diagnostic radiology.
    Jones AK; Hintenlang D
    Radiat Prot Dosimetry; 2008; 132(1):80-7. PubMed ID: 18845674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental study on the characteristics of a radiophotoluminescence glass dosemeter with no energy compensation filter for measuring patient entrance doses in cardiac interventional procedures.
    Kato M; Chida K; Moritake T; Koguchi Y; Sato T; Oosaka H; Tosa T; Kadowaki K
    Radiat Prot Dosimetry; 2014 Dec; 162(3):224-9. PubMed ID: 24277872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The applicability of radiophotoluminescence dosemeter (RPLD) for measuring medical radiation (MR) doses.
    Manninen AL; Koivula A; Nieminen MT
    Radiat Prot Dosimetry; 2012 Aug; 151(1):1-9. PubMed ID: 22232778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OPTIMIZATION OF A RADIOPHOTOLUMINESCENT GLASS DOSEMETER FOR OCCUPATIONAL EYE LENS DOSIMETRY IN INTERVENTIONAL RADIOLOGY/CARDIOLOGY.
    Silva EH; Struelens L; Covens P; Ueno S; Koguchi Y; Vanhavere F; Buls N
    Radiat Prot Dosimetry; 2018 Dec; 182(2):177-183. PubMed ID: 29584902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of chest radiographic imaging parameters: a comparison of image quality and entrance skin dose for digital chest radiography systems.
    Sun Z; Lin C; Tyan Y; Ng KH
    Clin Imaging; 2012; 36(4):279-86. PubMed ID: 22726965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculated angular responses of an RPL dosemeter to photon and beta radiation.
    Hocine N
    Radiat Prot Dosimetry; 2012 Aug; 151(2):374-8. PubMed ID: 22361351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of absorbed organ doses and effective dose based on body mass index in digital radiography.
    Kim H; Park M; Park S; Jeong H; Kim J; Kim Y
    Radiat Prot Dosimetry; 2013 Jan; 153(1):92-9. PubMed ID: 22772453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin dose measurements using radiochromic films, TLDS and ionisation chamber and comparison with Monte Carlo simulation.
    Alashrah S; Kandaiya S; Maalej N; El-Taher A
    Radiat Prot Dosimetry; 2014 Dec; 162(3):338-44. PubMed ID: 24300340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of physical performance of a scintillation dosemeter for patient dosimetry in diagnostic radiology.
    de Sousa MC; Aubert B; Ricard M
    Br J Radiol; 2000 Dec; 73(876):1297-305. PubMed ID: 11205674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing 10 kVp and 15% Rules in Extremity Radiography.
    Coffey H; Chanopensiri V; Ly B; Nguyen D
    Radiol Technol; 2020 Jul; 91(6):516-524. PubMed ID: 32606229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Radiation exposure of children in pediatric radiology. Part 3: Conversion coefficients for reconstruction of organ doses achieved during chest X-ray examinations].
    Seidenbusch MC; Regulla D; Schneider K
    Rofo; 2008 Dec; 180(12):1061-81. PubMed ID: 19235700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo study of MOSFET dosemeter characteristics: dose dependence on photon energy, direction and dosemeter composition.
    Wang B; Xu XG; Kim CH
    Radiat Prot Dosimetry; 2005; 113(1):40-6. PubMed ID: 15728424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doses measured using AEC on direct digital radiographic (DDR) X-rays systems: updated results with an RP 162 perspective.
    Bowden L; Faulkner R; Gallagher A; O'Connor U; Walsh C; Dowling A; O'Reilly G
    Radiat Prot Dosimetry; 2013 Feb; 153(2):251-4. PubMed ID: 23175645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The absorbed dose to the gonads in adult patients undergoing defecographic study by digital or traditional radiographic imaging].
    Zonca G; De Thomatis A; Marchesini R; Sala S; Bozzini B; Cozzi G; Milella M; Salvetti M
    Radiol Med; 1997 Nov; 94(5):520-3. PubMed ID: 9465219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing the absorbed dose in intraoral radiography.
    Kaeppler G; Dietz K; Herz K; Reinert S
    Dentomaxillofac Radiol; 2007 Dec; 36(8):506-13. PubMed ID: 18033949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.
    Kim S; Yoshizumi TT; Toncheva G; Frush DP; Yin FF
    Radiat Prot Dosimetry; 2010 Mar; 138(3):257-63. PubMed ID: 19889800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of radiation dose in examination of the abdomen using different radiological imaging techniques.
    Marshall NW; Faulkner K; Busch HP; Marsh DM; Pfenning H
    Br J Radiol; 1994 May; 67(797):478-84. PubMed ID: 8193895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
    DeMarco JJ; Cagnon CH; Cody DD; Stevens DM; McCollough CH; O'Daniel J; McNitt-Gray MF
    Phys Med Biol; 2005 Sep; 50(17):3989-4004. PubMed ID: 16177525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.