These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25213417)

  • 1. Computational design of novel enzymes without cofactors.
    Smith MD; Zanghellini A; Grabs-Röthlisberger D
    Methods Mol Biol; 2014; 1216():197-210. PubMed ID: 25213417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of protein catalysts.
    Hilvert D
    Annu Rev Biochem; 2013; 82():447-70. PubMed ID: 23746259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast loop-closure algorithm to accelerate residue matching in computational enzyme design.
    Xue J; Huang X; Lin M; Zhu Y
    J Mol Model; 2016 Feb; 22(2):49. PubMed ID: 26825974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for enzyme design.
    Zhu X; Lai L
    J Comput Chem; 2009 Jan; 30(2):256-67. PubMed ID: 18615422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated scaffold selection for enzyme design.
    Malisi C; Kohlbacher O; Höcker B
    Proteins; 2009 Oct; 77(1):74-83. PubMed ID: 19408301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.
    Huang X; Xue J; Lin M; Zhu Y
    PLoS One; 2016; 11(5):e0156559. PubMed ID: 27243223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kemp elimination catalysts by computational enzyme design.
    Röthlisberger D; Khersonsky O; Wollacott AM; Jiang L; DeChancie J; Betker J; Gallaher JL; Althoff EA; Zanghellini A; Dym O; Albeck S; Houk KN; Tawfik DS; Baker D
    Nature; 2008 May; 453(7192):190-5. PubMed ID: 18354394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational redesign of metalloenzymes for catalyzing new reactions.
    Greisen P; Khare SD
    Methods Mol Biol; 2014; 1216():265-73. PubMed ID: 25213421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New algorithms and an in silico benchmark for computational enzyme design.
    Zanghellini A; Jiang L; Wollacott AM; Cheng G; Meiler J; Althoff EA; Röthlisberger D; Baker D
    Protein Sci; 2006 Dec; 15(12):2785-94. PubMed ID: 17132862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SABER: a computational method for identifying active sites for new reactions.
    Nosrati GR; Houk KN
    Protein Sci; 2012 May; 21(5):697-706. PubMed ID: 22492397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational tools for designing and engineering biocatalysts.
    Damborsky J; Brezovsky J
    Curr Opin Chem Biol; 2009 Feb; 13(1):26-34. PubMed ID: 19297237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational tools for designing and engineering enzymes.
    Damborsky J; Brezovsky J
    Curr Opin Chem Biol; 2014 Apr; 19():8-16. PubMed ID: 24780274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational method for design of connected catalytic networks in proteins.
    Weitzner BD; Kipnis Y; Daniel AG; Hilvert D; Baker D
    Protein Sci; 2019 Dec; 28(12):2036-2041. PubMed ID: 31642127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational biochemistry: old enzymes, new tricks.
    Ghirlanda G
    Nature; 2008 May; 453(7192):164-6. PubMed ID: 18464727
    [No Abstract]   [Full Text] [Related]  

  • 16. Computational Design of Synthetic Enzymes.
    Vaissier Welborn V; Head-Gordon T
    Chem Rev; 2019 Jun; 119(11):6613-6630. PubMed ID: 30277066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme catalysis by hydrogen bonds: the balance between transition state binding and substrate binding in oxyanion holes.
    Simón L; Goodman JM
    J Org Chem; 2010 Mar; 75(6):1831-40. PubMed ID: 20039621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational enzyme design: transitioning from catalytic proteins to enzymes.
    Mak WS; Siegel JB
    Curr Opin Struct Biol; 2014 Aug; 27():87-94. PubMed ID: 25005925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity.
    Lassila JK; Keeffe JR; Oelschlaeger P; Mayo SL
    Protein Eng Des Sel; 2005 Apr; 18(4):161-3. PubMed ID: 15820980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.