BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25213419)

  • 1. Computational design of metalloproteins.
    Parmar AS; Pike D; Nanda V
    Methods Mol Biol; 2014; 1216():233-49. PubMed ID: 25213419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal binding affinity and selectivity in metalloproteins: insights from computational studies.
    Dudev T; Lim C
    Annu Rev Biophys; 2008; 37():97-116. PubMed ID: 18573074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination.
    Gamble AJ; Peacock AF
    Methods Mol Biol; 2014; 1216():211-31. PubMed ID: 25213418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium Studies of Designed Metalloproteins.
    Gibney BR
    Methods Enzymol; 2016; 580():417-38. PubMed ID: 27586343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations.
    Dal Peraro M; Spiegel K; Lamoureux G; De Vivo M; DeGrado WF; Klein ML
    J Struct Biol; 2007 Mar; 157(3):444-53. PubMed ID: 17188512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting 3D structural templates for detection of metal-binding sites in protein structures.
    Goyal K; Mande SC
    Proteins; 2008 Mar; 70(4):1206-18. PubMed ID: 17847089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating metals into de novo proteins.
    Peacock AF
    Curr Opin Chem Biol; 2013 Dec; 17(6):934-9. PubMed ID: 24183813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T
    Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexibility of metal binding sites in proteins on a database scale.
    Babor M; Greenblatt HM; Edelman M; Sobolev V
    Proteins; 2005 May; 59(2):221-30. PubMed ID: 15726624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.
    Hansen WA; Mills JH; Khare SD
    Methods Mol Biol; 2016; 1414():173-85. PubMed ID: 27094291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.
    Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR
    Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function-based assessment of structural similarity measurements using metal co-factor orientation.
    Senn S; Nanda V; Falkowski P; Bromberg Y
    Proteins; 2014 Apr; 82(4):648-56. PubMed ID: 24127252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing metal-protein interactions using a de novo design approach.
    Ghosh D; Pecoraro VL
    Curr Opin Chem Biol; 2005 Apr; 9(2):97-103. PubMed ID: 15811792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational redesign of metalloenzymes for catalyzing new reactions.
    Greisen P; Khare SD
    Methods Mol Biol; 2014; 1216():265-73. PubMed ID: 25213421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale Quantum Refinement Approaches for Metalloproteins.
    Yan Z; Li X; Chung LW
    J Chem Theory Comput; 2021 Jun; 17(6):3783-3796. PubMed ID: 34032440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.