These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25213419)

  • 1. Computational design of metalloproteins.
    Parmar AS; Pike D; Nanda V
    Methods Mol Biol; 2014; 1216():233-49. PubMed ID: 25213419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal binding affinity and selectivity in metalloproteins: insights from computational studies.
    Dudev T; Lim C
    Annu Rev Biophys; 2008; 37():97-116. PubMed ID: 18573074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination.
    Gamble AJ; Peacock AF
    Methods Mol Biol; 2014; 1216():211-31. PubMed ID: 25213418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium Studies of Designed Metalloproteins.
    Gibney BR
    Methods Enzymol; 2016; 580():417-38. PubMed ID: 27586343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations.
    Dal Peraro M; Spiegel K; Lamoureux G; De Vivo M; DeGrado WF; Klein ML
    J Struct Biol; 2007 Mar; 157(3):444-53. PubMed ID: 17188512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting 3D structural templates for detection of metal-binding sites in protein structures.
    Goyal K; Mande SC
    Proteins; 2008 Mar; 70(4):1206-18. PubMed ID: 17847089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating metals into de novo proteins.
    Peacock AF
    Curr Opin Chem Biol; 2013 Dec; 17(6):934-9. PubMed ID: 24183813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T
    Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexibility of metal binding sites in proteins on a database scale.
    Babor M; Greenblatt HM; Edelman M; Sobolev V
    Proteins; 2005 May; 59(2):221-30. PubMed ID: 15726624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.
    Hansen WA; Mills JH; Khare SD
    Methods Mol Biol; 2016; 1414():173-85. PubMed ID: 27094291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.
    Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR
    Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function-based assessment of structural similarity measurements using metal co-factor orientation.
    Senn S; Nanda V; Falkowski P; Bromberg Y
    Proteins; 2014 Apr; 82(4):648-56. PubMed ID: 24127252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing metal-protein interactions using a de novo design approach.
    Ghosh D; Pecoraro VL
    Curr Opin Chem Biol; 2005 Apr; 9(2):97-103. PubMed ID: 15811792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational redesign of metalloenzymes for catalyzing new reactions.
    Greisen P; Khare SD
    Methods Mol Biol; 2014; 1216():265-73. PubMed ID: 25213421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale Quantum Refinement Approaches for Metalloproteins.
    Yan Z; Li X; Chung LW
    J Chem Theory Comput; 2021 Jun; 17(6):3783-3796. PubMed ID: 34032440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.