These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25213419)

  • 21. Statistical mechanical approach to competitive binding of metal ions to multi-center receptors.
    Borkovec M; Hamácek J; Piguet C
    Dalton Trans; 2004 Dec; (24):4096-105. PubMed ID: 15573160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates.
    Levy R; Edelman M; Sobolev V
    Proteins; 2009 Aug; 76(2):365-74. PubMed ID: 19173310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimal Functional Sites in Metalloproteins and Their Usage in Structural Bioinformatics.
    Rosato A; Valasatava Y; Andreini C
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27153067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling of metal interaction geometries for protein-ligand docking.
    Seebeck B; Reulecke I; Kämper A; Rarey M
    Proteins; 2008 May; 71(3):1237-54. PubMed ID: 18041759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response of a designed metalloprotein to changes in metal ion coordination, exogenous ligands, and active site volume determined by X-ray crystallography.
    Geremia S; Di Costanzo L; Randaccio L; Engel DE; Lombardi A; Nastri F; DeGrado WF
    J Am Chem Soc; 2005 Dec; 127(49):17266-76. PubMed ID: 16332076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single molecule force spectroscopy: a new tool for bioinorganic chemistry.
    Li H; Zheng P
    Curr Opin Chem Biol; 2018 Apr; 43():58-67. PubMed ID: 29223008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal complexes as structural templates for targeting proteins.
    Dörr M; Meggers E
    Curr Opin Chem Biol; 2014 Apr; 19():76-81. PubMed ID: 24561508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites.
    Valasatava Y; Andreini C; Rosato A
    Sci Rep; 2015 Mar; 5():9486. PubMed ID: 25820752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-binding promiscuity in artificial metalloenzyme design.
    Pordea A
    Curr Opin Chem Biol; 2015 Apr; 25():124-32. PubMed ID: 25603469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-MACiE: a database of metals involved in biological catalysis.
    Andreini C; Bertini I; Cavallaro G; Holliday GL; Thornton JM
    Bioinformatics; 2009 Aug; 25(16):2088-9. PubMed ID: 19369503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De Novo Design of Xeno-Metallo Coiled Coils.
    Slope LN; Peacock AF
    Chem Asian J; 2016 Mar; 11(5):660-6. PubMed ID: 26592205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds.
    Lu Y; Berry SM; Pfister TD
    Chem Rev; 2001 Oct; 101(10):3047-80. PubMed ID: 11710062
    [No Abstract]   [Full Text] [Related]  

  • 33. Competition among metal ions for protein binding sites: determinants of metal ion selectivity in proteins.
    Dudev T; Lim C
    Chem Rev; 2014 Jan; 114(1):538-56. PubMed ID: 24040963
    [No Abstract]   [Full Text] [Related]  

  • 34. Metallomics: whence and whither.
    Maret W; Copsey M
    Metallomics; 2012 Oct; 4(10):1017-9. PubMed ID: 22892956
    [No Abstract]   [Full Text] [Related]  

  • 35. Ligand-metal ion binding to proteins: investigation by ESI mass spectrometry.
    Potier N; Rogniaux H; Chevreux G; Van Dorsselaer A
    Methods Enzymol; 2005; 402():361-89. PubMed ID: 16401515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of tools and database for analysis of metal binding sites in protein.
    Kuntal BK; Aparoy P; Reddanna P
    Protein Pept Lett; 2010 Jun; 17(6):765-73. PubMed ID: 20205657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemistry meets biology in the coordination dynamics of metalloproteins.
    Maret W
    J Inorg Biochem; 2024 Feb; 251():112431. PubMed ID: 38016325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal ligand aromatic cation-pi interactions in metalloproteins: ligands coordinated to metal interact with aromatic residues.
    Zarić SD; Popović DM; Knapp EW
    Chemistry; 2000 Nov; 6(21):3935-42. PubMed ID: 11126954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data.
    Lancaster WA; Praissman JL; Poole FL; Cvetkovic A; Menon AL; Scott JW; Jenney FE; Thorgersen MP; Kalisiak E; Apon JV; Trauger SA; Siuzdak G; Tainer JA; Adams MW
    BMC Bioinformatics; 2011 Feb; 12():64. PubMed ID: 21356119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metalloproteomics, metalloproteomes, and the annotation of metalloproteins.
    Maret W
    Metallomics; 2010 Feb; 2(2):117-25. PubMed ID: 21069142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.