These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25213420)

  • 1. Incorporation of modified and artificial cofactors into naturally occurring protein scaffolds.
    Oohora K; Hayashi T
    Methods Mol Biol; 2014; 1216():251-63. PubMed ID: 25213420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of Heme Enzymes with Artificial Metalloporphyrinoids.
    Oohora K; Hayashi T
    Methods Enzymol; 2016; 580():439-54. PubMed ID: 27586344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene.
    Hayashi T; Murata D; Makino M; Sugimoto H; Matsuo T; Sato H; Shiro Y; Hisaeda Y
    Inorg Chem; 2006 Dec; 45(26):10530-6. PubMed ID: 17173408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ion-dependent fluorescent dynamics of photoexcited zinc-porphyrin and zinc-myoglobin modified with ethylenediaminetetraacetic acid.
    Takashima H; Kawahara H; Kitano M; Shibata S; Murakami H; Tsukahara K
    J Phys Chem B; 2008 Dec; 112(48):15493-502. PubMed ID: 18991435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of peripheral trifluoromethyl groups in artificial iron porphycene cofactor on ligand binding properties of myoglobin.
    Matsuo T; Ito K; Nakashima Y; Hisaeda Y; Hayashi T
    J Inorg Biochem; 2008 Feb; 102(2):166-73. PubMed ID: 17845820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-covalent modification of the heme-pocket of apomyoglobin by a 1,10-phenanthroline derivative.
    Hitomi Y; Mukai H; Yoshimura H; Tanaka T; Funabiki T
    Bioorg Med Chem Lett; 2006 Jan; 16(2):248-51. PubMed ID: 16249084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin.
    Juillard S; Chevance S; Bondon A; Simonneaux G
    Biochim Biophys Acta; 2011 Sep; 1814(9):1188-94. PubMed ID: 21600316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron hemiporphycene as a functional prosthetic group for myoglobin.
    Neya S; Imai K; Hori H; Ishikawa H; Ishimori K; Okuno D; Nagatomo S; Hoshino T; Hata M; Funasaki N
    Inorg Chem; 2003 Mar; 42(5):1456-61. PubMed ID: 12611510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in
    Perkins LJ; Weaver BR; Buller AR; Burstyn JN
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox properties of engineered ruthenium myoglobin.
    Li CZ; Taniguchi I; Mulchandani A
    Bioelectrochemistry; 2009 Jun; 75(2):182-8. PubMed ID: 19427819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-transfer chemistry of Ru-linker-(heme)-modified myoglobin: rapid intraprotein reduction of a photogenerated porphyrin cation radical.
    Immoos CE; Di Bilio AJ; Cohen MS; Van der Veer W; Gray HB; Farmer PJ
    Inorg Chem; 2004 Jun; 43(12):3593-6. PubMed ID: 15180412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue myoglobin reconstituted with an iron porphycene shows extremely high oxygen affinity.
    Hayashi T; Dejima H; Matsuo T; Sato H; Murata D; Hisaeda Y
    J Am Chem Soc; 2002 Sep; 124(38):11226-7. PubMed ID: 12236710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and photovoltaic characterization of bio-sensitized solar cells using myoglobin-based sensitizers.
    Chang CW; Chang CH; Lu HP; Wu TK; Diau EW
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1688-95. PubMed ID: 19435026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel controlling mechanism of the oxygen affinity in myoglobin with isomeric porphyrins.
    Neya S; Suzuki M; Hoshino T
    Artif Organs; 2009 Feb; 33(2):189-93. PubMed ID: 19178466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues.
    Lemon CM; Marletta MA
    Acc Chem Res; 2021 Dec; 54(24):4565-4575. PubMed ID: 34890183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrous supramolecular hemoprotein assemblies connected with synthetic heme dimer and apohemoprotein dimer.
    Onoda A; Takahashi A; Oohora K; Onuma Y; Hayashi T
    Chem Biodivers; 2012 Sep; 9(9):1684-92. PubMed ID: 22976961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of apomyoglobin with membranes: mechanisms and effects on heme uptake.
    Vernier G; Chenal A; Vitrac H; Barumandzadhe R; Montagner C; Forge V
    Protein Sci; 2007 Mar; 16(3):391-400. PubMed ID: 17242377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional evaluation of iron oxypyriporphyrin in protein heme pocket.
    Neya S; Suzuki M; Ode H; Hoshino T; Furutani Y; Kandori H; Hori H; Imai K; Komatsu T
    Inorg Chem; 2008 Nov; 47(22):10771-8. PubMed ID: 18844346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.