These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 25213437)
1. The effects of interactions between proline and carbon nanostructures on organocatalysis in the Hajos-Parrish-Eder-Sauer-Wiechert reaction. Rance GA; Khlobystov AN Nanoscale; 2014 Oct; 6(19):11141-6. PubMed ID: 25213437 [TBL] [Abstract][Full Text] [Related]
2. Evaluating beta-amino acids as enantioselective organocatalysts of the Hajos-Parrish-Eder-Sauer-Wiechert reaction. Davies SG; Russell AJ; Sheppard RL; Smith AD; Thomson JE Org Biomol Chem; 2007 Oct; 5(19):3190-200. PubMed ID: 17878978 [TBL] [Abstract][Full Text] [Related]
3. Highly enantioselective organocatalysis of the Hajos-Parrish-Eder-Sauer-Wiechert reaction by the beta-amino acid cispentacin. Davies SG; Sheppard RL; Smith AD; Thomson JE Chem Commun (Camb); 2005 Aug; (30):3802-4. PubMed ID: 16041422 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition states of proline-catalyzed intra- and intermolecular aldol reactions. Hoang L; Bahmanyar S; Houk KN; List B J Am Chem Soc; 2003 Jan; 125(1):16-7. PubMed ID: 12515489 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular assemblies of amphiphilic L-proline regulated by compressed CO2 as a recyclable organocatalyst for the asymmetric aldol reaction. Qin L; Zhang L; Jin Q; Zhang J; Han B; Liu M Angew Chem Int Ed Engl; 2013 Jul; 52(30):7761-5. PubMed ID: 23776072 [TBL] [Abstract][Full Text] [Related]
6. Rate limiting step precedes C-C bond formation in the archetypical proline-catalyzed intramolecular aldol reaction. Zhu H; Clemente FR; Houk KN; Meyer MP J Am Chem Soc; 2009 Feb; 131(5):1632-3. PubMed ID: 19191687 [TBL] [Abstract][Full Text] [Related]
7. 'Five at one stroke': proline and small peptides in the stereoselective de novo synthesis and enantiotopic functionalization of carbohydrates. Limbach M Chem Biodivers; 2005 Jul; 2(7):825-36. PubMed ID: 17193175 [TBL] [Abstract][Full Text] [Related]
8. Theory of asymmetric organocatalysis of Aldol and related reactions: rationalizations and predictions. Allemann C; Gordillo R; Clemente FR; Cheong PH; Houk KN Acc Chem Res; 2004 Aug; 37(8):558-69. PubMed ID: 15311955 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in Asymmetric Synthesis of Pyrrolidine-Based Organocatalysts and Their Application: A 15-Year Update. Quintavalla A; Carboni D; Lombardo M Molecules; 2023 Feb; 28(5):. PubMed ID: 36903480 [TBL] [Abstract][Full Text] [Related]
10. Proline organocatalysis as a new tool for the asymmetric synthesis of ulosonic acid precursors. Enders D; Gasperi T Chem Commun (Camb); 2007 Jan; (1):88-90. PubMed ID: 17279270 [TBL] [Abstract][Full Text] [Related]
11. A highly efficient organocatalyst for direct aldol reactions of ketones with aldehydes [corrected]. Tang Z; Yang ZH; Chen XH; Cun LF; Mi AQ; Jiang YZ; Gong LZ J Am Chem Soc; 2005 Jun; 127(25):9285-9. PubMed ID: 15969611 [TBL] [Abstract][Full Text] [Related]
12. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering. Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549 [TBL] [Abstract][Full Text] [Related]
14. Proline-tetrazole-catalyzed enantioselective N-nitroso aldol reaction of aldehydes with in situ generated nitrosocarbonyl compounds. Maji B; Yamamoto H Angew Chem Int Ed Engl; 2014 Aug; 53(33):8714-7. PubMed ID: 24554628 [TBL] [Abstract][Full Text] [Related]
15. Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties. Roumeli E; Papageorgiou DG; Tsanaktsis V; Terzopoulou Z; Chrissafis K; Avgeropoulos A; Bikiaris DN ACS Appl Mater Interfaces; 2015 Jun; 7(21):11683-94. PubMed ID: 25950403 [TBL] [Abstract][Full Text] [Related]
16. D-Glucosamine in a chimeric prolinamide organocatalyst for direct asymmetric aldol addition. De Nisco M; Pedatella S; Bektaş S; Nucci A; Caputo R Carbohydr Res; 2012 Jul; 356():273-7. PubMed ID: 22575747 [TBL] [Abstract][Full Text] [Related]
17. Enhanced catalyst performance through compartmentalization exemplified by colloidal l-proline modified microgel catalysts. Kleinschmidt D; Fernandes MS; Mork M; Meyer AA; Krischel J; Anakhov MV; Gumerov RA; Potemkin II; Rueping M; Pich A J Colloid Interface Sci; 2020 Feb; 559():76-87. PubMed ID: 31610307 [TBL] [Abstract][Full Text] [Related]
18. Efficient organocatalytic cross-aldol reaction between aliphatic aldehydes through their functional differentiation. Kano T; Sugimoto H; Maruoka K J Am Chem Soc; 2011 Nov; 133(45):18130-3. PubMed ID: 21999103 [TBL] [Abstract][Full Text] [Related]
19. Highly enantio- and diastereoselective organocatalytic desymmetrization of prochiral cyclohexanones by simple direct aldol reaction catalyzed by proline. Companyó X; Valero G; Crovetto L; Moyano A; Rios R Chemistry; 2009 Jul; 15(27):6564-8. PubMed ID: 19405053 [No Abstract] [Full Text] [Related]
20. A chiral solvent effect in asymmetric organocatalysis. North M; Villuendas P Org Lett; 2010 May; 12(10):2378-81. PubMed ID: 20397662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]