These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25213557)

  • 1. Surface polarization enhanced Seebeck effects in vertical multi-layer metal-polymer-metal thin-film devices.
    Liu Q; Hu D; Wang H; Stanford M; Wang H; Hu B
    Phys Chem Chem Phys; 2014 Oct; 16(40):22201-6. PubMed ID: 25213557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seebeck effects in n-type and p-type polymers driven simultaneously by surface polarization and entropy differences based on conductor/polymer/conductor thin-film devices.
    Hu D; Liu Q; Tisdale J; Lei T; Pei J; Wang H; Urbas A; Hu B
    ACS Nano; 2015 May; 9(5):5208-13. PubMed ID: 25877512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Seebeck effect in C
    Liu Y; Xu L; Zhao C; Shao M; Hu B
    Phys Chem Chem Phys; 2017 Jun; 19(22):14793-14800. PubMed ID: 28548168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature.
    García-Cañadas J; Min G
    Rev Sci Instrum; 2014 Apr; 85(4):043906. PubMed ID: 24784625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-based setup for simultaneous measurement of the Seebeck coefficient and electrical conductivity for bulk and thin film thermoelectrics.
    Melhem A; Rogé V; Huynh TTD; Stolz A; Talbi A; Tchiffo-Tameko C; Lecas T; Boulmer-Leborgne C; Millon E; Semmar N
    Rev Sci Instrum; 2018 Nov; 89(11):113901. PubMed ID: 30501322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributed Review: Instruments for measuring Seebeck coefficient of thin film thermoelectric materials: A mini-review.
    Wang C; Chen F; Sun K; Chen R; Li M; Zhou X; Sun Y; Chen D; Wang G
    Rev Sci Instrum; 2018 Oct; 89(10):101501. PubMed ID: 30399921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening for combinatorial thin-film library of thermoelectric materials.
    Watanabe M; Kita T; Fukumura T; Ohtomo A; Ueno K; Kawasaki M
    J Comb Chem; 2008; 10(2):175-8. PubMed ID: 18278874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostat for high temperature and transient characterization of thin film thermoelectric materials.
    Singh R; Shakouri A
    Rev Sci Instrum; 2009 Feb; 80(2):025101. PubMed ID: 19256672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field-effect-modulated Seebeck coefficient in organic semiconductors.
    Pernstich KP; Rössner B; Batlogg B
    Nat Mater; 2008 Apr; 7(4):321-5. PubMed ID: 18297079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of the spin Seebeck effect.
    Uchida K; Takahashi S; Harii K; Ieda J; Koshibae W; Ando K; Maekawa S; Saitoh E
    Nature; 2008 Oct; 455(7214):778-81. PubMed ID: 18843364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation Control to Augment Interfacial Charge Transport in Te-P3HT Hybrid Materials for High Thermoelectric Performance.
    Shah SZH; Ding Z; Aabdin Z; Tjiu WW; Recatala-Gomez J; Dai H; Yang X; Maheswar RDV; Wu G; Hippalgaonkar K; Nandhakumar I; Kumar P
    Adv Sci (Weinh); 2024 Sep; 11(35):e2400802. PubMed ID: 39044364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of an instrument for spatially resolved Seebeck coefficient measurements.
    Zakutayev A; Luciano FJ; Bollinger VP; Sigdel AK; Ndione PF; Perkins JD; Berry JJ; Parilla PA; Ginley DS
    Rev Sci Instrum; 2013 May; 84(5):053905. PubMed ID: 23742564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrode materials, thermal annealing sequences, and lateral/vertical phase separation of polymer solar cells from multiscale molecular simulations.
    Lee CK; Wodo O; Ganapathysubramanian B; Pao CW
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20612-24. PubMed ID: 25373018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambipolar thermoelectric power of chemically-exfoliated RuO
    Kim J; Yoo S; Moon H; Kim SY; Ko DS; Roh JW; Lee W
    Nanotechnology; 2018 Jan; 29(1):015404. PubMed ID: 29115283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-dominated transport and enhanced thermoelectric figure of merit in topological insulator Bi(1.5)Sb(0.5)Te(1.7)Se(1.3).
    Hsiung TC; Mou CY; Lee TK; Chen YY
    Nanoscale; 2015 Jan; 7(2):518-23. PubMed ID: 25409984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO(2).
    Tang J; Wang W; Zhao GL; Li Q
    J Phys Condens Matter; 2009 May; 21(20):205703. PubMed ID: 21825536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel n-Type Organosilane-Metal Ion Hybrid of Rhodamine B and Copper Cation for Low-Temperature Thermoelectric Materials.
    Bertram JR; Penn A; Nee MJ; Rathnayake H
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10946-10954. PubMed ID: 28272862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of High-Throughput Seebeck Microprobe Measurements on Thermoelectric Half-Heusler Thin Film Combinatorial Material Libraries.
    Ziolkowski P; Wambach M; Ludwig A; Mueller E
    ACS Comb Sci; 2018 Jan; 20(1):1-18. PubMed ID: 29266920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Processed Ferrimagnetic Insulator Thin Film for the Microelectronic Spin Seebeck Energy Conversion.
    Oh I; Park J; Jo J; Jin MJ; Jang MS; Lee KS; Yoo JW
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28608-28614. PubMed ID: 30079725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Half metallic ferromagnets.
    Dowben P
    J Phys Condens Matter; 2007 Aug; 19(31):310301. PubMed ID: 21694101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.