These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25213564)

  • 21. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles.
    Chen W; Qian C; Liu XY; Yu HQ
    Environ Sci Technol; 2014 Oct; 48(19):11119-26. PubMed ID: 25222835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes.
    Huang X; Leal M; Li Q
    Water Res; 2008 Feb; 42(4-5):1142-50. PubMed ID: 17904191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria.
    Chowdhury I; Cwiertny DM; Walker SL
    Environ Sci Technol; 2012 Jul; 46(13):6968-76. PubMed ID: 22455349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorption of uranyl ions on TiO
    Wang J; He B; Wei X; Li P; Liang J; Qiang S; Fan Q; Wu W
    J Environ Sci (China); 2019 Jan; 75():115-123. PubMed ID: 30473276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations.
    Yang XN; Cui FY
    Water Sci Technol; 2013; 68(2):276-82. PubMed ID: 23863417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of ionic strength, electrolyte type, and NOM on As(V) adsorption onto TiO2.
    Liu GJ; Zhang XR; McWilliams L; Talley JW; Neal CR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Mar; 43(4):430-6. PubMed ID: 18273750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.
    Domingos RF; Tufenkji N; Wilkinson KI
    Environ Sci Technol; 2009 Mar; 43(5):1282-6. PubMed ID: 19350891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles.
    Lee J; Bartelt-Hunt SL; Li Y; Morton M
    Sci Total Environ; 2015 Apr; 511():195-202. PubMed ID: 25544338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards the standardization of nanoecotoxicity testing: Natural organic matter 'camouflages' the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae.
    Cerrillo C; Barandika G; Igartua A; Areitioaurtena O; Mendoza G
    Sci Total Environ; 2016 Feb; 543(Pt A):95-104. PubMed ID: 26580731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in Engineered Nanoparticle Surface Physicochemistry Revealed by Investigation of Changes in Copper Bioavailability During Sorption to Nanoparticles in the Aqueous Phase.
    Patsiou D; Kalman J; Fernandes TF; Henry TB
    Environ Toxicol Chem; 2019 May; 38(5):925-935. PubMed ID: 30698850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of fluoride and natural organic matter from natural tropical brackish waters by nanofiltration/reverse osmosis with varying water chemistry.
    Owusu-Agyeman I; Reinwald M; Jeihanipour A; Schäfer AI
    Chemosphere; 2019 Feb; 217():47-58. PubMed ID: 30404048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of natural organic matter and disinfection byproduct precursors from surface water onto TiO
    Gora SL; Andrews SA
    Chemosphere; 2017 May; 174():363-370. PubMed ID: 28187382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups.
    Chi FH; Amy GL
    J Colloid Interface Sci; 2004 Jun; 274(2):380-91. PubMed ID: 15144809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of titanium dioxide (TiO
    Hu B; Wang P; Hou J; Wang C; Qian J; Zhang N; Yuan Q
    Environ Pollut; 2017 Oct; 229():19-28. PubMed ID: 28575712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of humic acids on the aggregation and sorption of nano-TiO2.
    Li Y; Yang C; Guo X; Dang Z; Li X; Zhang Q
    Chemosphere; 2015 Jan; 119():171-176. PubMed ID: 24992218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluations of the TiO2/simulated solar UV degradations of XAD fractions of natural organic matter from a bog lake using size-exclusion chromatography.
    Valencia S; Marín JM; Restrepo G; Frimmel FH
    Water Res; 2013 Sep; 47(14):5130-8. PubMed ID: 23863374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles.
    Tan X; Wang X; Chen C; Sun A
    Appl Radiat Isot; 2007 Apr; 65(4):375-81. PubMed ID: 17157512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.