These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 2521378)

  • 1. RNP in maize protein.
    Mortenson E; Dreyfuss G
    Nature; 1989 Jan; 337(6205):312. PubMed ID: 2521378
    [No Abstract]   [Full Text] [Related]  

  • 2. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein.
    Gómez J; Sánchez-Martínez D; Stiefel V; Rigau J; Puigdomènech P; Pagès M
    Nature; 1988 Jul; 334(6179):262-4. PubMed ID: 2969461
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of norflurazon on the levels of abscisic acid and xanthoxin in caps of gravistimulated roots of maize.
    Feldman LJ
    Physiologist; 1985 Dec; 28(6 Suppl):S117-8. PubMed ID: 2939470
    [No Abstract]   [Full Text] [Related]  

  • 4. [The effects of calmodulin on the lipid-binding activity of CaM-binding protein-10 and maize non-specific lipid transfer protein].
    Xie WQ; Zhao LQ; Bai WY; Li ZP; Zhao YL; Li CF
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Dec; 32(6):679-84. PubMed ID: 17167205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics and the evolution of plant form: an example from maize.
    Doebley J; Wang RL
    Cold Spring Harb Symp Quant Biol; 1997; 62():361-7. PubMed ID: 9598370
    [No Abstract]   [Full Text] [Related]  

  • 6. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes.
    Schwartz SH; Qin X; Zeevaart JA
    Plant Physiol; 2003 Apr; 131(4):1591-601. PubMed ID: 12692318
    [No Abstract]   [Full Text] [Related]  

  • 7. [Cloning and expression of cDNA for maize nonspecific lipid transfer protein as well as calmodulin-binding activity analysis of the expression product].
    Bai WY; Zhao LQ; Li ZP; Xie WQ; Zhao YL; Li CF
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Oct; 32(5):570-6. PubMed ID: 17075181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and nucleotide diversity of the maize RIK gene.
    Buckner B; Swaggart KA; Wong CC; Smith HA; Aurand KM; Scanlon MJ; Schnable PS; Janick-Buckner D
    J Hered; 2008; 99(4):407-16. PubMed ID: 18310068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS.
    Schmidt RJ; Veit B; Mandel MA; Mena M; Hake S; Yanofsky MF
    Plant Cell; 1993 Jul; 5(7):729-37. PubMed ID: 8103379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence of maize chloroplast rpS11 with conserved amino acid sequence between eukaryotes, bacteria and plastids.
    Markmann-Mulisch U; Subramanian AR
    Biochem Int; 1988 Oct; 17(4):655-64. PubMed ID: 3149198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog.
    Agredano-Moreno LT; Reyes de la Cruz H; Martínez-Castilla LP; Sánchez de Jiménez E
    Mol Biosyst; 2007 Nov; 3(11):794-802. PubMed ID: 17940662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of apical dominance in maize.
    Doebley J; Stec A; Hubbard L
    Nature; 1997 Apr; 386(6624):485-8. PubMed ID: 9087405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of leaf initiation by the terminal ear 1 gene of maize.
    Veit B; Briggs SP; Schmidt RJ; Yanofsky MF; Hake S
    Nature; 1998 May; 393(6681):166-8. PubMed ID: 9603518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of an ABA analogue in the wilty tomato mutant, flacca.
    Bowman WR; Linforth RS; Rossall S; Taylor IB
    Biochem Genet; 1984 Apr; 22(3-4):369-78. PubMed ID: 6233967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of VPI in regulation of seed maturation in maize.
    McCarty DR
    Biochem Soc Trans; 1992 Feb; 20(1):89-92. PubMed ID: 1321768
    [No Abstract]   [Full Text] [Related]  

  • 16. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association.
    Mateos JL; Staiger D
    Plant Cell; 2023 May; 35(6):1708-1726. PubMed ID: 36461946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic proteomic analysis of NaCl-stressed germinating maize seeds.
    Meng LB; Chen YB; Lu TC; Wang YF; Qian CR; Yu Y; Ge XL; Li XH; Wang BC
    Mol Biol Rep; 2014 May; 41(5):3431-43. PubMed ID: 24700167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wound-Inducible Glycine-Rich Protein from Daucus carota with Homology to Single-Stranded Nucleic Acid-Binding Proteins.
    Sturm A
    Plant Physiol; 1992 Aug; 99(4):1689-92. PubMed ID: 16669093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of plant cell wall proteins.
    Showalter AM
    Plant Cell; 1993 Jan; 5(1):9-23. PubMed ID: 8439747
    [No Abstract]   [Full Text] [Related]  

  • 20. cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing.
    Hirose T; Sugita M; Sugiura M
    Nucleic Acids Res; 1993 Aug; 21(17):3981-7. PubMed ID: 8371974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.