BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25213858)

  • 1. In vivo inhibition of RIPK2 kinase alleviates inflammatory disease.
    Tigno-Aranjuez JT; Benderitter P; Rombouts F; Deroose F; Bai X; Mattioli B; Cominelli F; Pizarro TT; Hoflack J; Abbott DW
    J Biol Chem; 2014 Oct; 289(43):29651-64. PubMed ID: 25213858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potent and selective RIPK2 inhibitor BI 706039 improves intestinal inflammation in the TRUC mouse model of inflammatory bowel disease.
    Ermann J; Matmusaev M; Haley EK; Braun C; Jost F; Mayer-Wrangowski S; Hsiao P; Ting N; Li L; Terenzio D; Chime J; Lukas S; Patnaude L; Panzenbeck M; Csordas D; Zheng J; Mierz D; Simpson T; King FJ; Klimowicz AP; Mbow ML; Fine JS; Miller CA; Fogal SE; Byrne FR
    Am J Physiol Gastrointest Liver Physiol; 2021 Nov; 321(5):G500-G512. PubMed ID: 34494462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.
    Canning P; Ruan Q; Schwerd T; Hrdinka M; Maki JL; Saleh D; Suebsuwong C; Ray S; Brennan PE; Cuny GD; Uhlig HH; Gyrd-Hansen M; Degterev A; Bullock AN
    Chem Biol; 2015 Sep; 22(9):1174-84. PubMed ID: 26320862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of Potent and Selective Receptor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) Inhibitors for the Treatment of Inflammatory Bowel Diseases (IBDs).
    Yuan X; Chen Y; Tang M; Wei Y; Shi M; Yang Y; Zhou Y; Yang T; Liu J; Liu K; Deng D; Zhang C; Chen L
    J Med Chem; 2022 Jul; 65(13):9312-9327. PubMed ID: 35709396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Novel Protein Kinase Receptor Type 2 Inhibitors Using Pharmacophore and Structure-Based Virtual Screening.
    Cruz JV; Neto MFA; Silva LB; da S Ramos R; da S Costa J; Brasil DSB; Lobato CC; da Costa GV; Bittencourt JAHM; da Silva CHTP; Leite FHA; Santos CBR
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29463017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecule inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling.
    Hrdinka M; Schlicher L; Dai B; Pinkas DM; Bufton JC; Picaud S; Ward JA; Rogers C; Suebsuwong C; Nikhar S; Cuny GD; Huber KV; Filippakopoulos P; Bullock AN; Degterev A; Gyrd-Hansen M
    EMBO J; 2018 Sep; 37(17):. PubMed ID: 30026309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann-Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn's disease.
    Schwerd T; Pandey S; Yang HT; Bagola K; Jameson E; Jung J; Lachmann RH; Shah N; Patel SY; Booth C; Runz H; Düker G; Bettels R; Rohrbach M; Kugathasan S; Chapel H; Keshav S; Elkadri A; Platt N; Muise AM; Koletzko S; Xavier RJ; Marquardt T; Powrie F; Wraith JE; Gyrd-Hansen M; Platt FM; Uhlig HH
    Gut; 2017 Jun; 66(6):1060-1073. PubMed ID: 26953272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine kinase inhibitors of Ripk2 attenuate bacterial cell wall-mediated lipolysis, inflammation and dysglycemia.
    Duggan BM; Foley KP; Henriksbo BD; Cavallari JF; Tamrakar AK; Schertzer JD
    Sci Rep; 2017 May; 7(1):1578. PubMed ID: 28484277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RIPK2 Dictates Insulin Responses to Tyrosine Kinase Inhibitors in Obese Male Mice.
    Duggan BM; Cavallari JF; Foley KP; Barra NG; Schertzer JD
    Endocrinology; 2020 Aug; 161(8):. PubMed ID: 32473019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and metabolic inflammation in mice.
    Cavallari JF; Barra NG; Foley KP; Lee A; Duggan BM; Henriksbo BD; Anhê FF; Ashkar AA; Schertzer JD
    Am J Physiol Endocrinol Metab; 2020 Apr; 318(4):E579-E585. PubMed ID: 32101030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of pyrido[2,3-d]pyrimidin-7-one inhibitors of receptor interacting protein kinase-2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling.
    Nikhar S; Siokas I; Schlicher L; Lee S; Gyrd-Hansen M; Degterev A; Cuny GD
    Eur J Med Chem; 2021 Apr; 215():113252. PubMed ID: 33601309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis and evaluation of novel thieno[2,3d]pyrimidine derivatives as potent and specific RIPK2 inhibitors.
    Misehe M; Šála M; Matoušová M; Hercík K; Kocek H; Chalupská D; Chaloupecká E; Hájek M; Boura E; Mertlíková-Kaiserová H; Nencka R
    Bioorg Med Chem Lett; 2024 Jan; 97():129567. PubMed ID: 38008339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of RIP2's tyrosine kinase activity limits NOD2-driven cytokine responses.
    Tigno-Aranjuez JT; Asara JM; Abbott DW
    Genes Dev; 2010 Dec; 24(23):2666-77. PubMed ID: 21123652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RIPK2 inhibitors for disease therapy: Current status and perspectives.
    Tian E; Zhou C; Quan S; Su C; Zhang G; Yu Q; Li J; Zhang J
    Eur J Med Chem; 2023 Nov; 259():115683. PubMed ID: 37531744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAi screening identifies mediators of NOD2 signaling: implications for spatial specificity of MDP recognition.
    Lipinski S; Grabe N; Jacobs G; Billmann-Born S; Till A; Häsler R; Aden K; Paulsen M; Arlt A; Kraemer L; Hagemann N; Erdmann KS; Schreiber S; Rosenstiel P
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21426-31. PubMed ID: 23213202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Characterization of Novel Receptor-Interacting Serine/Threonine-Protein Kinase 2 Inhibitors Using Structural Similarity Analysis.
    Salla M; Aguayo-Ortiz R; Danmaliki GI; Zare A; Said A; Moore J; Pandya V; Manaloor R; Fong S; Blankstein AR; Gibson SB; Garcia LR; Meier P; Bhullar KS; Hubbard BP; Fiteh Y; Vliagoftis H; Goping IS; Brocks D; Hwang P; Velázquez-Martínez CA; Baksh S
    J Pharmacol Exp Ther; 2018 May; 365(2):354-367. PubMed ID: 29555876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RIPK2: a promising target for cancer treatment.
    You J; Wang Y; Chen H; Jin F
    Front Pharmacol; 2023; 14():1192970. PubMed ID: 37324457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis and biological evaluation of 4-aminoquinoline derivatives as receptor-interacting protein kinase 2 (RIPK2) inhibitors.
    Fan T; Ji Y; Chen D; Peng X; Ai J; Xiong B
    J Enzyme Inhib Med Chem; 2023 Dec; 38(1):282-293. PubMed ID: 36408835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 14-3-3 and erlin proteins differentially interact with RIPK2 complexes.
    Steinle H; Ellwanger K; Mirza N; Briese S; Kienes I; Pfannstiel J; Kufer TA
    J Cell Sci; 2021 Jun; 134(12):. PubMed ID: 34152391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor-interacting protein kinase 2 contributes to host innate immune responses against Fusobacterium nucleatum in macrophages and decidual stromal cells.
    Park JY; Lee TS; Noh EJ; Jang AR; Ahn JH; Kim DY; Jung DH; Song EJ; Lee YJ; Lee YJ; Lee SK; Park JH
    Am J Reprod Immunol; 2021 Jul; 86(1):e13403. PubMed ID: 33580557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.