BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25213912)

  • 1. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.
    Hernández MA; Comba S; Arabolaza A; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2191-207. PubMed ID: 25213912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630.
    Hernández MA; Arabolaza A; Rodríguez E; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2119-30. PubMed ID: 22926642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor.
    Comba S; Menendez-Bravo S; Arabolaza A; Gramajo H
    Microb Cell Fact; 2013 Jan; 12():9. PubMed ID: 23356794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing lipid production using an NADP
    Hernández MA; Alvarez HM
    Microbiology (Reading); 2019 Jan; 165(1):4-14. PubMed ID: 30372408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1.
    Villalba MS; Alvarez HM
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1523-1532. PubMed ID: 24739215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630.
    Alvarez AF; Alvarez HM; Kalscheuer R; Wältermann M; Steinbüchel A
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2327-2335. PubMed ID: 18667565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MLDSR, the transcriptional regulator of the major lipid droplets protein MLDS, is controlled by long-chain fatty acids and contributes to the lipid-accumulating phenotype in oleaginous Rhodococcus strains.
    Hernández MA; Ledesma AE; Moncalián G; Alvarez HM
    FEBS J; 2024 Apr; 291(7):1457-1482. PubMed ID: 38135896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of key triacylglycerol biosynthesis processes in rhodococci.
    Amara S; Seghezzi N; Otani H; Diaz-Salazar C; Liu J; Eltis LD
    Sci Rep; 2016 Apr; 6():24985. PubMed ID: 27126051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat Small Intestinal Mucosal Epithelial Cells Absorb Dietary 1,3-Diacylglycerol Via Phosphatidic Acid Pathways.
    Xu T; Li J; Zou J; Qiu B; Liu W; Lin X; Li D; Liu Z; Du F
    Lipids; 2018 Mar; 53(3):335-344. PubMed ID: 29701264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the Metabolism of Oleaginous
    Alvarez HM; Herrero OM; Silva RA; Hernández MA; Lanfranconi MP; Villalba MS
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31324625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases.
    Huang L; Zhao L; Zan X; Song Y; Ratledge C
    Biotechnol Lett; 2016 Jun; 38(6):999-1008. PubMed ID: 26956236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pleiotropic transcriptional regulator NlpR contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci.
    Hernández MA; Lara J; Gago G; Gramajo H; Alvarez HM
    Mol Microbiol; 2017 Jan; 103(2):366-385. PubMed ID: 27786393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of key enzymes involved in triacylglycerol biosynthesis in mycobacteria.
    Crotta Asis A; Savoretti F; Cabruja M; Gramajo H; Gago G
    Sci Rep; 2021 Jun; 11(1):13257. PubMed ID: 34168231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production.
    Herrero OM; Moncalián G; Alvarez HM
    Microbiology (Reading); 2016 Feb; 162(2):384-397. PubMed ID: 26732874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630.
    Lanfranconi MP; Alvarez HM
    J Biotechnol; 2017 Oct; 260():67-73. PubMed ID: 28917932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
    Holder JW; Ulrich JC; DeBono AC; Godfrey PA; Desjardins CA; Zucker J; Zeng Q; Leach AL; Ghiviriga I; Dancel C; Abeel T; Gevers D; Kodira CD; Desany B; Affourtit JP; Birren BW; Sinskey AJ
    PLoS Genet; 2011 Sep; 7(9):e1002219. PubMed ID: 21931557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production.
    Comba S; Sabatini M; Menendez-Bravo S; Arabolaza A; Gramajo H
    Biotechnol Biofuels; 2014; 7(1):172. PubMed ID: 25593590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.