BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25214095)

  • 21. Folic acid complexes with human and bovine serum albumins.
    Bourassa P; Hasni I; Tajmir-Riahi HA
    Food Chem; 2011 Dec; 129(3):1148-55. PubMed ID: 25212350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competitive interactions among tea catechins, proteins, and digestive enzymes modulate in vitro protein digestibility, catechin bioaccessibility, and antioxidant activity of milk tea beverage model systems.
    Qie X; Wu Y; Chen Y; Liu C; Zeng M; Qin F; Wang Z; Chen J; He Z
    Food Res Int; 2021 Feb; 140():110050. PubMed ID: 33648275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles.
    Li B; Du W; Jin J; Du Q
    J Agric Food Chem; 2012 Apr; 60(13):3477-84. PubMed ID: 22409289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resveratrol, genistein, and curcumin bind bovine serum albumin.
    Bourassa P; Kanakis CD; Tarantilis P; Pollissiou MG; Tajmir-Riahi HA
    J Phys Chem B; 2010 Mar; 114(9):3348-54. PubMed ID: 20148537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin.
    Zhang L; Sahu ID; Xu M; Wang Y; Hu X
    Food Chem; 2017 Apr; 221():1923-1929. PubMed ID: 27979181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Encapsulation of testosterone and its aliphatic and aromatic dimers by milk beta-lactoglobulin.
    Chanphai P; Vesper AR; Bekale L; Bérubé G; Tajmir-Riahi HA
    Int J Biol Macromol; 2015 May; 76():153-60. PubMed ID: 25725333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity.
    Liu T; Liu M; Liu H; Ren Y; Zhao Y; Yan H; Wang Q; Zhang N; Ding Z; Wang Z
    Food Funct; 2021 Aug; 12(16):7126-7144. PubMed ID: 34180492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting the heme protein hemoglobin by (-)-epigallocatechin gallate and the study of polyphenol-protein association using multi-spectroscopic and computational methods.
    Das S; Sarmah S; Hazarika Z; Rohman MA; Sarkhel P; Jha AN; Singha Roy A
    Phys Chem Chem Phys; 2020 Jan; 22(4):2212-2228. PubMed ID: 31913367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Silico Investigations on the Synergistic Binding Mechanism of Functional Compounds with Beta-Lactoglobulin.
    Meng T; Wang Z; Zhang H; Zhao Z; Huang W; Xu L; Liu M; Li J; Yan H
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved.
    Chung JY; Huang C; Meng X; Dong Z; Yang CS
    Cancer Res; 1999 Sep; 59(18):4610-7. PubMed ID: 10493515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of beta-lactoglobulin with resveratrol and its biological implications.
    Liang L; Tajmir-Riahi HA; Subirade M
    Biomacromolecules; 2008 Jan; 9(1):50-6. PubMed ID: 18067252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locating the binding sites of folic acid with milk α- and β-caseins.
    Bourassa P; Tajmir-Riahi HA
    J Phys Chem B; 2012 Jan; 116(1):513-9. PubMed ID: 22103859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.
    Lestringant P; Guri A; Gülseren I; Relkin P; Corredig M
    J Agric Food Chem; 2014 Aug; 62(33):8357-64. PubMed ID: 25077960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties.
    Azam S; Hadi N; Khan NU; Hadi SM
    Toxicol In Vitro; 2004 Oct; 18(5):555-61. PubMed ID: 15251172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of tea polyphenols and food constituents with model gut epithelia: the protective role of the mucus gel layer.
    D'Agostino EM; Rossetti D; Atkins D; Ferdinando D; Yakubov GE
    J Agric Food Chem; 2012 Mar; 60(12):3318-28. PubMed ID: 22364573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative studies of interaction of β-lactoglobulin with three polyphenols.
    Xu J; Hao M; Sun Q; Tang L
    Int J Biol Macromol; 2019 Sep; 136():804-812. PubMed ID: 31228500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small-Angle X-ray Scattering Study of Protein Complexes with Tea Polyphenols.
    Shi C; Tang H; Xiao J; Cui F; Yang K; Li J; Zhao Q; Huang Q; Li Y
    J Agric Food Chem; 2017 Jan; 65(3):656-665. PubMed ID: 28049293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549.
    Yamauchi R; Sasaki K; Yoshida K
    Toxicol In Vitro; 2009 Aug; 23(5):834-9. PubMed ID: 19406223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between tea catechins and casein micelles and their impact on renneting functionality.
    Haratifar S; Corredig M
    Food Chem; 2014 Jan; 143():27-32. PubMed ID: 24054208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding study of novel anti-diabetic pyrimidine fused heterocycles to β-lactoglobulin as a carrier protein.
    Mehraban MH; Yousefi R; Taheri-Kafrani A; Panahi F; Khalafi-Nezhad A
    Colloids Surf B Biointerfaces; 2013 Dec; 112():374-9. PubMed ID: 24028850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.