BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 25214492)

  • 41. Membrane properties of Enchytraeus albidus originating from contrasting environments: a comparative analysis.
    Fisker KV; Bouvrais H; Overgaard J; Schöttner K; Ipsen JH; Holmstrup M
    J Comp Physiol B; 2015 May; 185(4):389-400. PubMed ID: 25663468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of gamma irradiation and repetitive freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis tendons.
    Ren D; Sun K; Tian S; Yang X; Zhang C; Wang W; Huang H; Zhang J; Deng Y
    J Biomech; 2012 Jan; 45(2):252-6. PubMed ID: 22078178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cold tolerance and overwintering of an introduced New Zealand frog, the brown tree frog (Litoria ewingii).
    Bazin Y; Wharton DA; Bishop PJ
    Cryo Letters; 2007; 28(5):347-58. PubMed ID: 18075704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of freezing parameters (freeze cycle and thaw process) on tissue destruction following renal cryoablation.
    Woolley ML; Schulsinger DA; Durand DB; Zeltser IS; Waltzer WC
    J Endourol; 2002 Sep; 16(7):519-22. PubMed ID: 12396446
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel observations of "freeze resistance" and dynamic blue and green dorsal coloration in frozen and thawing Dryophytes chrysoscelis.
    Yokum EE; Goldstein DL; Krane CM
    J Exp Zool A Ecol Integr Physiol; 2023 Dec; 339(10):1044-1051. PubMed ID: 37661700
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae.
    Teets NM; Kawarasaki Y; Lee RE; Denlinger DL
    J Exp Biol; 2011 Mar; 214(Pt 5):806-14. PubMed ID: 21307067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Freeze tolerance in the gray treefrog: cryoprotectant mobilization and organ dehydration.
    Layne JR; Jones AL
    J Exp Zool; 2001 Jun; 290(1):1-5. PubMed ID: 11429758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata.
    Worland MR; Wharton DA; Byars SG
    J Insect Physiol; 2004; 50(2-3):225-32. PubMed ID: 15019525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs.
    Slotsbo S; Hansen LM; Jordaens K; Backeljau T; Malmendal A; Nielsen NC; Holmstrup M
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Apr; 161(4):443-9. PubMed ID: 22248916
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance.
    Holmstrup M; Sørensen JG; Dai W; Krogh PH; Schmelz RM; Slotsbo S
    J Comp Physiol B; 2022 Jul; 192(3-4):435-445. PubMed ID: 35312816
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular, crystal and physicochemical properties of granular waxy corn starch after repeated freeze-thaw cycles at different freezing temperatures.
    Liu Y; Gao J; Wu H; Gou M; Jing L; Zhao K; Zhang B; Zhang G; Li W
    Int J Biol Macromol; 2019 Jul; 133():346-353. PubMed ID: 31002898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Freeze tolerance in an arctic Alaska stonefly.
    Walters KR; Sformo T; Barnes BM; Duman JG
    J Exp Biol; 2009 Jan; 212(Pt 2):305-12. PubMed ID: 19112150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of freeze/thaw cycles on several biomarkers in urine from patients with kidney disease.
    Zhang Y; Luo Y; Lu H; Wang N; Shen Y; Chen R; Fang P; Yu H; Wang C; Jia W
    Biopreserv Biobank; 2015 Apr; 13(2):144-6. PubMed ID: 25880475
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine).
    Mayr S; Gruber A; Bauer H
    Planta; 2003 Jul; 217(3):436-41. PubMed ID: 14520570
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Repeated freezing induces a trade-off between cryoprotection and egg production in the goldenrod gall fly,
    Marshall KE; Sinclair BJ
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29895680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of hetastarch on the stability of L-asparaginase during freeze-thaw cycling.
    Jameel F; Kalonia D; Bogner R
    PDA J Pharm Sci Technol; 1995; 49(3):127-31. PubMed ID: 7542144
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Freeze induced glucose accumulation in the enchytraeid, Fredericia ratzeli from Greenland.
    Holmstrup M; Sjursen H
    Cryo Letters; 2001; 22(5):273-6. PubMed ID: 11788868
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons.
    Suto K; Urabe K; Naruse K; Uchida K; Matsuura T; Mikuni-Takagaki Y; Suto M; Nemoto N; Kamiya K; Itoman M
    Cell Tissue Bank; 2012 Mar; 13(1):71-80. PubMed ID: 21116722
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Breast Cancer Cryoablation: Assessment of the Impact of Fundamental Procedural Variables in an In Vitro Human Breast Cancer Model.
    Snyder KK; Van Buskirk RG; Baust JG; Baust JM
    Breast Cancer (Auckl); 2020; 14():1178223420972363. PubMed ID: 33239880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.