These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25214624)

  • 1. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices.
    Meza LR; Das S; Greer JR
    Science; 2014 Sep; 345(6202):1322-6. PubMed ID: 25214624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resilient 3D hierarchical architected metamaterials.
    Meza LR; Zelhofer AJ; Clarke N; Mateos AJ; Kochmann DM; Greer JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11502-7. PubMed ID: 26330605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-off.
    Zhang X; Yao J; Liu B; Yan J; Lu L; Li Y; Gao H; Li X
    Nano Lett; 2018 Jul; 18(7):4247-4256. PubMed ID: 29901403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong, Ultralight Nanofoams with Extreme Recovery and Dissipation by Manipulation of Internal Adhesive Contacts.
    Park SJ; Shin J; Magagnosc DJ; Kim S; Cao C; Turner KT; Purohit PK; Gianola DS; Hart AJ
    ACS Nano; 2020 Jul; 14(7):8383-8391. PubMed ID: 32348120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures.
    Lee SW; Jafary-Zadeh M; Chen DZ; Zhang YW; Greer JR
    Nano Lett; 2015 Sep; 15(9):5673-81. PubMed ID: 26262592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges.
    Wang H; Zhang X; Wang N; Li Y; Feng X; Huang Y; Zhao C; Liu Z; Fang M; Ou G; Gao H; Li X; Wu H
    Sci Adv; 2017 Jun; 3(6):e1603170. PubMed ID: 28630915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoarchitected metal/ceramic interpenetrating phase composites.
    Bauer J; Sala-Casanovas M; Amiri M; Valdevit L
    Sci Adv; 2022 Aug; 8(33):eabo3080. PubMed ID: 35977008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures.
    Guell Izard A; Bauer J; Crook C; Turlo V; Valdevit L
    Small; 2019 Nov; 15(45):e1903834. PubMed ID: 31531942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials.
    Montemayor LC; Wong WH; Zhang YW; Greer JR
    Sci Rep; 2016 Feb; 6():20570. PubMed ID: 26837581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.
    Mieszala M; Hasegawa M; Guillonneau G; Bauer J; Raghavan R; Frantz C; Kraft O; Mischler S; Michler J; Philippe L
    Small; 2017 Feb; 13(8):. PubMed ID: 27966819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralight, Strong, Three-Dimensional SiC Structures.
    Chabi S; Rocha VG; García-Tuñón E; Ferraro C; Saiz E; Xia Y; Zhu Y
    ACS Nano; 2016 Feb; 10(2):1871-6. PubMed ID: 26580985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaching theoretical strength in glassy carbon nanolattices.
    Bauer J; Schroer A; Schwaiger R; Kraft O
    Nat Mater; 2016 Apr; 15(4):438-43. PubMed ID: 26828314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices.
    Zhang X; Wang Y; Ding B; Li X
    Small; 2020 Apr; 16(15):e1902842. PubMed ID: 31483576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultralight metallic microlattices.
    Schaedler TA; Jacobsen AJ; Torrents A; Sorensen AE; Lian J; Greer JR; Valdevit L; Carter WB
    Science; 2011 Nov; 334(6058):962-5. PubMed ID: 22096194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices.
    Dou NG; Jagt RA; Portela CM; Greer JR; Minnich AJ
    Nano Lett; 2018 Aug; 18(8):4755-4761. PubMed ID: 30022671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of ceramic surface treatments on the tensile bond strength of composite resin to all-ceramic coping materials.
    Kim BK; Bae HE; Shim JS; Lee KW
    J Prosthet Dent; 2005 Oct; 94(4):357-62. PubMed ID: 16198173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic.
    Chaiyabutr Y; McGowan S; Phillips KM; Kois JC; Giordano RA
    J Prosthet Dent; 2008 Sep; 100(3):194-202. PubMed ID: 18762031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-ceramic fixed partial dentures. Studies on aluminum oxide- and zirconium dioxide-based ceramic systems.
    Vult von Steyern P
    Swed Dent J Suppl; 2005; (173):1-69. PubMed ID: 16001730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials design in the performance of all-ceramic crowns.
    Lawn BR; Pajares A; Zhang Y; Deng Y; Polack MA; Lloyd IK; Rekow ED; Thompson VP
    Biomaterials; 2004 Jun; 25(14):2885-92. PubMed ID: 14962567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.