These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25215295)

  • 1. Mechanotransduction in musculoskeletal tissue regeneration: effects of fluid flow, loading, and cellular-molecular pathways.
    Qin YX; Hu M
    Biomed Res Int; 2014; 2014():863421. PubMed ID: 25215295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteocytes and WNT: the mechanical control of bone formation.
    Galli C; Passeri G; Macaluso GM
    J Dent Res; 2010 Apr; 89(4):331-43. PubMed ID: 20200416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications.
    Yan Y; Wang L; Ge L; Pathak JL
    Curr Osteoporos Rep; 2020 Feb; 18(1):67-80. PubMed ID: 31953640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone marrow mechanotransduction in porcine explants alters kinase activation and enhances trabecular bone formation in the absence of osteocyte signaling.
    Curtis KJ; Coughlin TR; Mason DE; Boerckel JD; Niebur GL
    Bone; 2018 Feb; 107():78-87. PubMed ID: 29154967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomolecular Cell-Signaling Mechanisms and Dental Implants: A Review on the Regulatory Molecular Biologic Patterns Under Functional and Immediate Loading.
    Romanos GE
    Int J Oral Maxillofac Implants; 2016; 31(4):939-51. PubMed ID: 27447163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment.
    Sawakami K; Robling AG; Ai M; Pitner ND; Liu D; Warden SJ; Li J; Maye P; Rowe DW; Duncan RL; Warman ML; Turner CH
    J Biol Chem; 2006 Aug; 281(33):23698-711. PubMed ID: 16790443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
    Ganesh T; Laughrey LE; Niroobakhsh M; Lara-Castillo N
    Bone; 2020 Aug; 137():115328. PubMed ID: 32201360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical signaling for bone modeling and remodeling.
    Robling AG; Turner CH
    Crit Rev Eukaryot Gene Expr; 2009; 19(4):319-38. PubMed ID: 19817708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone permeability and mechanotransduction: Some current insights into the function of the lacunar-canalicular network.
    Murshid SA
    Tissue Cell; 2022 Apr; 75():101730. PubMed ID: 35032785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal β-catenin deletion from Dmp1-expressing osteocytes/osteoblasts reduces structural adaptation to loading, but not periosteal load-induced bone formation.
    Kang KS; Hong JM; Robling AG
    Bone; 2016 Jul; 88():138-145. PubMed ID: 27143110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic skeletal muscle stimulation and its potential in bone adaptation.
    Qin YX; Lam H; Ferreri S; Rubin C
    J Musculoskelet Neuronal Interact; 2010 Mar; 10(1):12-24. PubMed ID: 20190376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic hydraulic fluid stimulation regulated intramedullary pressure.
    Hu M; Serra-Hsu F; Bethel N; Lin L; Ferreri S; Cheng J; Qin YX
    Bone; 2013 Nov; 57(1):137-41. PubMed ID: 23895997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanotransduction and the functional response of bone to mechanical strain.
    Duncan RL; Turner CH
    Calcif Tissue Int; 1995 Nov; 57(5):344-58. PubMed ID: 8564797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connexins and Pannexins in Bone and Skeletal Muscle.
    Plotkin LI; Davis HM; Cisterna BA; Sáez JC
    Curr Osteoporos Rep; 2017 Aug; 15(4):326-334. PubMed ID: 28647887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Wnt pathway: An important control mechanism in bone's response to mechanical loading.
    Choi RB; Robling AG
    Bone; 2021 Dec; 153():116087. PubMed ID: 34271473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone.
    Riquelme MA; Cardenas ER; Xu H; Jiang JX
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32050469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin.
    Robling AG; Niziolek PJ; Baldridge LA; Condon KW; Allen MR; Alam I; Mantila SM; Gluhak-Heinrich J; Bellido TM; Harris SE; Turner CH
    J Biol Chem; 2008 Feb; 283(9):5866-75. PubMed ID: 18089564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the sphingosine-1-phosphate signaling pathway in osteocyte mechanotransduction.
    Zhang JN; Zhao Y; Liu C; Han ES; Yu X; Lidington D; Bolz SS; You L
    Bone; 2015 Oct; 79():71-8. PubMed ID: 25988659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Advances in Osteocyte Mechanotransduction.
    Li X; Kordsmeier J; Xiong J
    Curr Osteoporos Rep; 2021 Feb; 19(1):101-106. PubMed ID: 33420631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations.
    Hu M; Tian GW; Gibbons DE; Jiao J; Qin YX
    Arch Biochem Biophys; 2015 Aug; 579():55-61. PubMed ID: 26045248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.