These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25215507)

  • 1. De-novo learning of genome-scale regulatory networks in S. cerevisiae.
    Ma S; Kemmeren P; Gresham D; Statnikov A
    PLoS One; 2014; 9(9):e106479. PubMed ID: 25215507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks.
    Narendra V; Lytkin NI; Aliferis CF; Statnikov A
    Genomics; 2011 Jan; 97(1):7-18. PubMed ID: 20951196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks.
    Michoel T; De Smet R; Joshi A; Van de Peer Y; Marchal K
    BMC Syst Biol; 2009 May; 3():49. PubMed ID: 19422680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches.
    Cantone I; Marucci L; Iorio F; Ricci MA; Belcastro V; Bansal M; Santini S; di Bernardo M; di Bernardo D; Cosma MP
    Cell; 2009 Apr; 137(1):172-81. PubMed ID: 19327819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning the structure of gene regulatory networks from time series gene expression data.
    Li H; Wang N; Gong P; Perkins EJ; Zhang C
    BMC Genomics; 2011 Dec; 12 Suppl 5(Suppl 5):S13. PubMed ID: 22369588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative evaluation of data-merging and meta-analysis methods for reconstructing gene-gene interactions.
    Lagani V; Karozou AD; Gomez-Cabrero D; Silberberg G; Tsamardinos I
    BMC Bioinformatics; 2016 Jun; 17 Suppl 5(Suppl 5):194. PubMed ID: 27294826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.
    Zhu J; Zhang B; Smith EN; Drees B; Brem RB; Kruglyak L; Bumgarner RE; Schadt EE
    Nat Genet; 2008 Jul; 40(7):854-61. PubMed ID: 18552845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis.
    Chen SF; Juang YL; Chou WK; Lai JM; Huang CY; Kao CY; Wang FS
    BMC Syst Biol; 2009 Nov; 3():110. PubMed ID: 19943917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
    Li S; Heermann DW
    Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary rates and centrality in the yeast gene regulatory network.
    Jovelin R; Phillips PC
    Genome Biol; 2009; 10(4):R35. PubMed ID: 19358738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic reconstruction of a functional transcriptional regulatory network.
    Hu Z; Killion PJ; Iyer VR
    Nat Genet; 2007 May; 39(5):683-7. PubMed ID: 17417638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae.
    Guzmán-Vargas L; Santillán M
    BMC Syst Biol; 2008 Jan; 2():13. PubMed ID: 18237429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data.
    Razaghi-Moghadam Z; Nikoloski Z
    NPJ Syst Biol Appl; 2020 Jun; 6(1):21. PubMed ID: 32606380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Condition-Specific Modeling of Biophysical Parameters Advances Inference of Regulatory Networks.
    Tchourine K; Vogel C; Bonneau R
    Cell Rep; 2018 Apr; 23(2):376-388. PubMed ID: 29641998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data.
    Ruan J; Deng Y; Perkins EJ; Zhang W
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19594885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of co-expression patterns in E. coli and S. cerevisiae emerging from reverse engineering algorithms.
    Zampieri M; Soranzo N; Bianchini D; Altafini C
    PLoS One; 2008 Aug; 3(8):e2981. PubMed ID: 18714358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.