These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25215538)

  • 1. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera).
    Zeng Y; Tan X; Zhang L; Jiang N; Cao H
    PLoS One; 2014; 9(9):e107422. PubMed ID: 25215538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association Genetics Identifies Single Nucleotide Polymorphisms Related to Kernel Oil Content and Quality in Camellia oleifera.
    Lin P; Yin H; Yan C; Yao X; Wang K
    J Agric Food Chem; 2019 Mar; 67(9):2547-2562. PubMed ID: 30758959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-Length Transcriptome from
    Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D
    J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three
    Yang D; Wang R; Lai H; He Y; Chen Y; Xun C; Zhang Y; He Z
    J Agric Food Chem; 2024 Aug; 72(32):18257-18270. PubMed ID: 39084609
    [No Abstract]   [Full Text] [Related]  

  • 8. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island.
    Ye Z; Wu Y; Ul Haq Muhammad Z; Yan W; Yu J; Zhang J; Yao G; Hu X
    PLoS One; 2020; 15(2):e0226888. PubMed ID: 32027663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptomic analysis of high- and low-oil
    Wu B; Ruan C; Han P; Ruan D; Xiong C; Ding J; Liu S
    3 Biotech; 2019 Jul; 9(7):257. PubMed ID: 31192082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global Transcriptome and Correlation Analysis Reveal Cultivar-Specific Molecular Signatures Associated with Fruit Development and Fatty Acid Determination in
    Peng S; Lu J; Zhang Z; Ma L; Liu C; Chen Y
    Int J Genomics; 2020; 2020():6162802. PubMed ID: 32953873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical metabolic pathways and SAD/FADs, WRI1s, and DGATs cooperate for high-oleic acid oil production in developing oil tea (
    Yang J; Chen B; Manan S; Li P; Liu C; She G; Zhao S; Zhao J
    Hortic Res; 2022; 9():uhac087. PubMed ID: 35694723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.
    Wang X; Zeng Q; Del Mar Contreras M; Wang L
    Food Res Int; 2017 Dec; 102():184-194. PubMed ID: 29195939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
    Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ
    PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Cultivars and Geography in China on the Lipid Characteristics of Camellia oleifera Seeds.
    Zeng W; Endo Y
    J Oleo Sci; 2019 Nov; 68(11):1051-1061. PubMed ID: 31611514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil.
    Lee CP; Yen GC
    J Agric Food Chem; 2006 Feb; 54(3):779-84. PubMed ID: 16448182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea (
    Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X
    J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China.
    Long L; Gao C; Qiu J; Yang L; Wei H; Zhou Y
    Sci Rep; 2022 Oct; 12(1):16554. PubMed ID: 36192507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y; Wei C; Yang H; Zhang L; Chen Q; Deng W; Wei S; Zhang J; Fang C; Ho C; Wan X
    BMC Plant Biol; 2015 Aug; 15():190. PubMed ID: 26245644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maillard reaction derived from oil-tea camellia seed through roasting.
    Luo F; Fei X
    J Sci Food Agric; 2019 Aug; 99(11):5000-5007. PubMed ID: 30977140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Genome-Wide Identification of the
    Ye Z; Mao D; Wang Y; Deng H; Liu X; Zhang T; Han Z; Zhang X
    Plants (Basel); 2024 May; 13(11):. PubMed ID: 38891253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.