These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25215655)

  • 1. Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophorearsenic complex formation with an aid of rhizospheric bacterial activity.
    Jeong S; Moon HS; Nam K
    J Hazard Mater; 2014 Sep; 280():536-43. PubMed ID: 25215655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata.
    Liu X; Fu JW; Da Silva E; Shi XX; Cao Y; Rathinasabapathi B; Chen Y; Ma LQ
    Environ Pollut; 2017 Apr; 223():230-237. PubMed ID: 28108165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site.
    Jeong S; Moon HS; Nam K
    Chemosphere; 2015 Mar; 122():1-7. PubMed ID: 25441929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.
    Mandal A; Purakayastha TJ; Patra AK; Sanyal SK
    Int J Phytoremediation; 2012 Jul; 14(6):621-8. PubMed ID: 22908631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of indole-3-acetic acid on arsenic uptake and antioxidative enzymes in Pteris cretica var. nervosa and Pteris ensiformis.
    He S; Hu Y; Wang H; Wang H; Li Q
    Int J Phytoremediation; 2017 Mar; 19(3):231-238. PubMed ID: 27419850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Cao X; Ma LQ; Tu C
    Environ Pollut; 2004; 128(3):317-25. PubMed ID: 14720474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth.
    Liu X; Yang GM; Guan DX; Ghosh P; Ma LQ
    Environ Pollut; 2015 Nov; 206():376-81. PubMed ID: 26247380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.
    Ghosh P; Rathinasabapathi B; Ma LQ
    Chemosphere; 2015 Sep; 134():1-6. PubMed ID: 25880602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa.
    Zhang X; Yang X; Wang H; Li Q; Wang H; Li Y
    Ecotoxicol Environ Saf; 2017 Apr; 138():199-205. PubMed ID: 28061413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic bioavailability in the soil amended with leaves of arsenic hyperaccumulator, Chinese brake fern (Pteris vittata L).
    Du X; Cui Y; Weng L; Cao Q; Zhu Y
    Environ Toxicol Chem; 2008 Jan; 27(1):126-30. PubMed ID: 18092848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A; Sylvia DM; Ma LQ
    J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three new arsenic hyperaccumulating ferns.
    Srivastava M; Ma LQ; Santos JA
    Sci Total Environ; 2006 Jul; 364(1-3):24-31. PubMed ID: 16371231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation.
    Poynton CY; Huang JW; Blaylock MJ; Kochian LV; Elless MP
    Planta; 2004 Oct; 219(6):1080-8. PubMed ID: 15221388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests.
    Mandal A; Purakayastha TJ; Patra AK; Sanyal SK
    Int J Phytoremediation; 2012 Dec; 14(10):978-95. PubMed ID: 22908659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
    Danh LT; Truong P; Mammucari R; Foster N
    Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Enhancement of As-accumulation by Pteris vittata L. affected by microorganisms].
    Zhao GC; Liao XY; Yan XL; Zhu GH; Tu SX; Li SY; Wang Y
    Huan Jing Ke Xue; 2010 Feb; 31(2):431-6. PubMed ID: 20391714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The arsenic hyperaccumulator fern Pteris vittata L.
    Xie QE; Yan XL; Liao XY; Li X
    Environ Sci Technol; 2009 Nov; 43(22):8488-95. PubMed ID: 20028042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.