These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25215695)

  • 1. Statistical thermodynamics of clustered populations.
    Matsoukas T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022113. PubMed ID: 25215695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending multiple histogram reweighting to a continuous lattice spin system exhibiting a first-order phase transition.
    Sinha S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):054102. PubMed ID: 23767658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials.
    Liu X; Seider WD; Sinno T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase behavior and structure formation in linear multiblock copolymer solutions by Monte Carlo simulation.
    Gindy ME; Prud'homme RK; Panagiotopoulos AZ
    J Chem Phys; 2008 Apr; 128(16):164906. PubMed ID: 18447499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of peptide aggregation processes: an analysis from perspectives of three statistical ensembles.
    Junghans C; Bachmann M; Janke W
    J Chem Phys; 2008 Feb; 128(8):085103. PubMed ID: 18315086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic properties of short-range attractive Yukawa fluid: simulation and theory.
    Orea P; Tapia-Medina C; Pini D; Reiner A
    J Chem Phys; 2010 Mar; 132(11):114108. PubMed ID: 20331282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcanonical entropy inflection points: key to systematic understanding of transitions in finite systems.
    Schnabel S; Seaton DT; Landau DP; Bachmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011127. PubMed ID: 21867133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing stationary distributions in equilibrium and nonequilibrium systems with forward flux sampling.
    Valeriani C; Allen RJ; Morelli MJ; Frenkel D; Rein ten Wolde P
    J Chem Phys; 2007 Sep; 127(11):114109. PubMed ID: 17887830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path-integral Monte Carlo method for the local Z2 Berry phase.
    Motoyama Y; Todo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):021301. PubMed ID: 23496453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of protein folding in the presence of residue-specific binding sites.
    Rossinsky E; Srebnik S
    Biopolymers; 2005 Dec; 79(5):259-68. PubMed ID: 16134169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.
    Inglis S; Melko RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013306. PubMed ID: 23410459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coil-bridge transition in a single polymer chain as an unconventional phase transition: theory and simulation.
    Klushin LI; Skvortsov AM; Polotsky AA; Hsu HP; Binder K
    J Chem Phys; 2014 May; 140(20):204908. PubMed ID: 24880326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crowding of polymer coils and demixing in nanoparticle-polymer mixtures.
    Lu B; Denton AR
    J Phys Condens Matter; 2011 Jul; 23(28):285102. PubMed ID: 21709352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic ordering of clusters and stripes in a two-dimensional lattice model. II. Results of Monte Carlo simulation.
    Almarza NG; Pȩkalski J; Ciach A
    J Chem Phys; 2014 Apr; 140(16):164708. PubMed ID: 24784300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and theory of flexible equilibrium polymers under poor solvent conditions.
    Pam LS; Spell LL; Kindt JT
    J Chem Phys; 2007 Apr; 126(13):134906. PubMed ID: 17430066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase separation in solutions with specific and nonspecific interactions.
    Jacobs WM; Oxtoby DW; Frenkel D
    J Chem Phys; 2014 May; 140(20):204109. PubMed ID: 24880268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of phase coexistence properties and surface tensions of n-alkanes with grand-canonical transition-matrix monte carlo simulation and finite-size scaling.
    Singh JK; Errington JR
    J Phys Chem B; 2006 Jan; 110(3):1369-76. PubMed ID: 16471687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Event-chain Monte Carlo algorithms for hard-sphere systems.
    Bernard EP; Krauth W; Wilson DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056704. PubMed ID: 20365093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Smoluchowski Ensemble-Statistical Mechanics of Aggregation.
    Matsoukas T
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation for single RNA unfolding by force.
    Liu F; Ou-Yang ZC
    Biophys J; 2005 Jan; 88(1):76-84. PubMed ID: 15501942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.