These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25215772)

  • 21. Development of neural population activity toward self-organized criticality.
    Yada Y; Mita T; Sanada A; Yano R; Kanzaki R; Bakkum DJ; Hierlemann A; Takahashi H
    Neuroscience; 2017 Feb; 343():55-65. PubMed ID: 27915209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Landau-Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization.
    di Santo S; Villegas P; Burioni R; Muñoz MA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1356-E1365. PubMed ID: 29378970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-electrode array recordings of neuronal avalanches in organotypic cultures.
    Plenz D; Stewart CV; Shew W; Yang H; Klaus A; Bellay T
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21841767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches.
    Shew WL; Yang H; Yu S; Roy R; Plenz D
    J Neurosci; 2011 Jan; 31(1):55-63. PubMed ID: 21209189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro.
    Tang A; Jackson D; Hobbs J; Chen W; Smith JL; Patel H; Prieto A; Petrusca D; Grivich MI; Sher A; Hottowy P; Dabrowski W; Litke AM; Beggs JM
    J Neurosci; 2008 Jan; 28(2):505-18. PubMed ID: 18184793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches.
    Shaukat A; Thivierge JP
    Front Comput Neurosci; 2016; 10():29. PubMed ID: 27092071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The scale-invariant, temporal profile of neuronal avalanches in relation to cortical γ-oscillations.
    Miller SR; Yu S; Plenz D
    Sci Rep; 2019 Nov; 9(1):16403. PubMed ID: 31712632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.
    Ribeiro TL; Copelli M; Caixeta F; Belchior H; Chialvo DR; Nicolelis MA; Ribeiro S
    PLoS One; 2010 Nov; 5(11):e14129. PubMed ID: 21152422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective Participation of Single Cortical Neurons in Neuronal Avalanches.
    Bellay T; Shew WL; Yu S; Falco-Walter JJ; Plenz D
    Front Neural Circuits; 2020; 14():620052. PubMed ID: 33551757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximum-entropy models reveal the excitatory and inhibitory correlation structures in cortical neuronal activity.
    Nghiem TA; Telenczuk B; Marre O; Destexhe A; Ferrari U
    Phys Rev E; 2018 Jul; 98(1-1):012402. PubMed ID: 30110850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth of cortical neuronal network in vitro: modeling and analysis.
    Lai PY; Jia LC; Chan CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051906. PubMed ID: 16802966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.
    Bellay T; Klaus A; Seshadri S; Plenz D
    Elife; 2015 Jul; 4():e07224. PubMed ID: 26151674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
    Palva JM; Zhigalov A; Hirvonen J; Korhonen O; Linkenkaer-Hansen K; Palva S
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3585-90. PubMed ID: 23401536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Management of synchronized network activity by highly active neurons.
    Shein M; Volman V; Raichman N; Hanein Y; Ben-Jacob E
    Phys Biol; 2008 Sep; 5(3):036008. PubMed ID: 18780962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device.
    Kanagasabapathi TT; Massobrio P; Barone RA; Tedesco M; Martinoia S; Wadman WJ; Decré MM
    J Neural Eng; 2012 Jun; 9(3):036010. PubMed ID: 22614532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple model of complex dynamics of activity patterns in developing networks of neuronal cultures.
    Tyukin IY; Iudin D; Iudin F; Tyukina T; Kazantsev V; Mukhina I; Gorban AN
    PLoS One; 2019; 14(6):e0218304. PubMed ID: 31246978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental analysis and computational modeling of interburst intervals in spontaneous activity of cortical neuronal culture.
    Gritsun T; le Feber J; Stegenga J; Rutten WL
    Biol Cybern; 2011 Oct; 105(3-4):197-210. PubMed ID: 22030696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.