These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25215810)

  • 1. Rogue-wave pattern transition induced by relative frequency.
    Zhao LC; Xin GG; Yang ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022918. PubMed ID: 25215810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation.
    Zhao LC; Liu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013201. PubMed ID: 23410451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-order rogue waves in vector nonlinear Schrödinger equations.
    Ling L; Guo B; Zhao LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):041201. PubMed ID: 24827185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of four-wave mixing effect in the interactions between nonlinear modes of coupled generalized nonlinear Schrödinger equation.
    Vishnu Priya N; Senthilvelan M; Rangarajan G
    Chaos; 2019 Dec; 29(12):123135. PubMed ID: 31893664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rogue wave modes for a derivative nonlinear Schrödinger model.
    Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrable pair-transition-coupled nonlinear Schrödinger equations.
    Ling L; Zhao LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022924. PubMed ID: 26382492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical rogue waves associated with the negative coherent coupling in an isotropic medium.
    Sun WR; Tian B; Jiang Y; Zhen HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023205. PubMed ID: 25768624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation mechanisms of fundamental rogue wave spatial-temporal structure.
    Ling L; Zhao LC; Yang ZY; Guo B
    Phys Rev E; 2017 Aug; 96(2-1):022211. PubMed ID: 28950590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.
    Sun WR; Liu DY; Xie XY
    Chaos; 2017 Apr; 27(4):043114. PubMed ID: 28456173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.
    Zhang G; Yan Z; Wen XY
    Proc Math Phys Eng Sci; 2017 Jul; 473(2203):20170243. PubMed ID: 28804266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.
    Chen S; Soto-Crespo JM; Grelu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033203. PubMed ID: 25314555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A coupled "AB" system: Rogue waves and modulation instabilities.
    Wu CF; Grimshaw RH; Chow KW; Chan HN
    Chaos; 2015 Oct; 25(10):103113. PubMed ID: 26520079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear Fourier classification of 663 rogue waves measured in the Philippine Sea.
    Lee YC; Brühl M; Doong DJ; Wahls S
    PLoS One; 2024; 19(5):e0301709. PubMed ID: 38743649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane.
    Liu TY; Chiu TL; Clarkson PA; Chow KW
    Chaos; 2017 Sep; 27(9):091103. PubMed ID: 28964137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Various solitons induced by relative phase in the nonlinear Schrödinger Maxwell-Bloch system.
    Ren Y; Guo L; Cao XW; Duan L
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38198679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers.
    Wang L; Zhu YJ; Qi FH; Li M; Guo R
    Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers.
    Yomba E; Zakeri GA
    Chaos; 2016 Aug; 26(8):083115. PubMed ID: 27586611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple determinant representation for rogue waves of the nonlinear Schrödinger equation.
    Ling L; Zhao LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043201. PubMed ID: 24229294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.