These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 25215889)
1. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets. Mizunami M; Nemoto Y; Terao K; Hamanaka Y; Matsumoto Y PLoS One; 2014; 9(9):e107442. PubMed ID: 25215889 [TBL] [Abstract][Full Text] [Related]
2. Roles of NO signaling in long-term memory formation in visual learning in an insect. Matsumoto Y; Hirashima D; Terao K; Mizunami M PLoS One; 2013; 8(7):e68538. PubMed ID: 23894314 [TBL] [Abstract][Full Text] [Related]
3. Critical role of nitric oxide-cGMP cascade in the formation of cAMP-dependent long-term memory. Matsumoto Y; Unoki S; Aonuma H; Mizunami M Learn Mem; 2006; 13(1):35-44. PubMed ID: 16452652 [TBL] [Abstract][Full Text] [Related]
4. Cyclic nucleotide-gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee. Matsumoto Y; Sandoz JC; Devaud JM; Lormant F; Mizunami M; Giurfa M Learn Mem; 2014 Apr; 21(5):272-86. PubMed ID: 24741108 [TBL] [Abstract][Full Text] [Related]
5. Stimulation of the cAMP system by the nitric oxide-cGMP system underlying the formation of long-term memory in an insect. Matsumoto Y; Hatano A; Unoki S; Mizunami M Neurosci Lett; 2009 Dec; 467(2):81-5. PubMed ID: 19818830 [TBL] [Abstract][Full Text] [Related]
6. Critical roles of nicotinic acetylcholine receptors in olfactory memory formation and retrieval in crickets. Matsumoto Y; Matsumoto CS; Mizunami M Front Physiol; 2024; 15():1345397. PubMed ID: 38405118 [TBL] [Abstract][Full Text] [Related]
7. CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee. Scholl C; Kübert N; Muenz TS; Rössler W J Exp Biol; 2015 Dec; 218(Pt 23):3788-96. PubMed ID: 26486369 [TBL] [Abstract][Full Text] [Related]
8. Delayed intrinsic activation of an NMDA-independent CaM-kinase II in a critical time window is necessary for late consolidation of an associative memory. Wan H; Mackay B; Iqbal H; Naskar S; Kemenes G J Neurosci; 2010 Jan; 30(1):56-63. PubMed ID: 20053887 [TBL] [Abstract][Full Text] [Related]
9. Participation of NO signaling in formation of long-term memory in salivary conditioning of the cockroach. Matsumoto CS; Kuramochi T; Matsumoto Y; Watanabe H; Nishino H; Mizunami M Neurosci Lett; 2013 Apr; 541():4-8. PubMed ID: 23333539 [TBL] [Abstract][Full Text] [Related]
10. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia. Cabrera-Pastor A; Llansola M; Felipo V ACS Chem Neurosci; 2016 Dec; 7(12):1753-1759. PubMed ID: 27673574 [TBL] [Abstract][Full Text] [Related]
11. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets. Matsumoto Y; Matsumoto CS; Takahashi T; Mizunami M Front Behav Neurosci; 2016; 10():166. PubMed ID: 27616985 [TBL] [Abstract][Full Text] [Related]
12. Prevention of long-term memory loss after retrieval by an endogenous CaMKII inhibitor. Vigil FA; Mizuno K; Lucchesi W; Valls-Comamala V; Giese KP Sci Rep; 2017 Jun; 7(1):4040. PubMed ID: 28642476 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain. Kosakai K; Tsujiuchi Y; Yoshino M J Insect Physiol; 2015 Jul; 78():26-32. PubMed ID: 25934217 [TBL] [Abstract][Full Text] [Related]
14. Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning. Kemenes I; Kemenes G; Andrew RJ; Benjamin PR; O'Shea M J Neurosci; 2002 Feb; 22(4):1414-25. PubMed ID: 11850468 [TBL] [Abstract][Full Text] [Related]
15. Ca²+/calmodulin-dependent protein kinase II (CaMKII) activity and sinoatrial nodal pacemaker cell energetics. Yaniv Y; Spurgeon HA; Ziman BD; Lakatta EG PLoS One; 2013; 8(2):e57079. PubMed ID: 23459256 [TBL] [Abstract][Full Text] [Related]
16. CASK and CaMKII function in the mushroom body α'/β' neurons during Drosophila memory formation. Malik BR; Gillespie JM; Hodge JJ Front Neural Circuits; 2013; 7():52. PubMed ID: 23543616 [TBL] [Abstract][Full Text] [Related]
17. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft. Dries E; Santiago DJ; Johnson DM; Gilbert G; Holemans P; Korte SM; Roderick HL; Sipido KR J Physiol; 2016 Oct; 594(20):5923-5939. PubMed ID: 27121757 [TBL] [Abstract][Full Text] [Related]
18. Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. Friedrich A; Thomas U; Müller U J Neurosci; 2004 May; 24(18):4460-8. PubMed ID: 15128860 [TBL] [Abstract][Full Text] [Related]
19. The KN-93 Molecule Inhibits Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity by Binding to Ca Wong MH; Samal AB; Lee M; Vlach J; Novikov N; Niedziela-Majka A; Feng JY; Koltun DO; Brendza KM; Kwon HJ; Schultz BE; Sakowicz R; Saad JS; Papalia GA J Mol Biol; 2019 Mar; 431(7):1440-1459. PubMed ID: 30753871 [TBL] [Abstract][Full Text] [Related]
20. Differential regulation of CaMKII inhibitor beta protein expression after exposure to a novel context and during contextual fear memory formation. Radwańska K; Tudor-Jones AA; Mizuno K; Pereira GS; Lucchesi W; Alfano I; Łach A; Kaczmarek L; Knapp S; Giese KP Genes Brain Behav; 2010 Aug; 9(6):648-57. PubMed ID: 20487031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]