These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 25215906)
1. Ultrasonic elasticity determination of 45S5 Bioglass(®)-based scaffolds: influence of polymer coating and crosslinking treatment. Li W; Pastrama MI; Ding Y; Zheng K; Hellmich C; Boccaccini AR J Mech Behav Biomed Mater; 2014 Dec; 40():85-94. PubMed ID: 25215906 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: Effect of polymer composition. Motealleh A; Eqtesadi S; Pajares A; Miranda P J Mech Behav Biomed Mater; 2018 Aug; 84():35-45. PubMed ID: 29729579 [TBL] [Abstract][Full Text] [Related]
3. 45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene. Fabbri P; Valentini L; Hum J; Detsch R; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3592-600. PubMed ID: 23910254 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate. Montazeri M; Karbasi S; Foroughi MR; Monshi A; Ebrahimi-Kahrizsangi R J Mater Sci Mater Med; 2015 Feb; 26(2):62. PubMed ID: 25631260 [TBL] [Abstract][Full Text] [Related]
5. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. Yao Q; Nooeaid P; Detsch R; Roether JA; Dong Y; Goudouri OM; Schubert DW; Boccaccini AR J Biomed Mater Res A; 2014 Dec; 102(12):4510-8. PubMed ID: 24677705 [TBL] [Abstract][Full Text] [Related]
6. Bioglass® 45S5-based composites for bone tissue engineering and functional applications. Rizwan M; Hamdi M; Basirun WJ J Biomed Mater Res A; 2017 Nov; 105(11):3197-3223. PubMed ID: 28686004 [TBL] [Abstract][Full Text] [Related]
7. Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating. Nooeaid P; Li W; Roether JA; Mouriño V; Goudouri OM; Schubert DW; Boccaccini AR Biointerphases; 2014 Dec; 9(4):041001. PubMed ID: 25553876 [TBL] [Abstract][Full Text] [Related]
8. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate-Bioglass® composite coating on stainless steel: mechanical properties and in-vitro bioactivity assessment. Chen Q; Cabanas-Polo S; Goudouri OM; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():55-64. PubMed ID: 24857465 [TBL] [Abstract][Full Text] [Related]
9. In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. Meng D; Rath SN; Mordan N; Salih V; Kneser U; Boccaccini AR J Biomed Mater Res A; 2011 Dec; 99(3):435-44. PubMed ID: 21887738 [TBL] [Abstract][Full Text] [Related]
11. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds. Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477 [TBL] [Abstract][Full Text] [Related]
12. Bioactivity of polyurethane-based scaffolds coated with Bioglass. Bil M; Ryszkowska J; Roether JA; Bretcanu O; Boccaccini AR Biomed Mater; 2007 Jun; 2(2):93-101. PubMed ID: 18458441 [TBL] [Abstract][Full Text] [Related]
13. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. Singh D; Zo SM; Kumar A; Han SS J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035 [TBL] [Abstract][Full Text] [Related]
14. Gelatin coating increases in vivo bone formation capacity of three-dimensional 45S5 bioactive glass-based crystalline scaffolds. Westhauser F; Senger AS; Obert D; Ciraldo FE; Schuhladen K; Schmidmaier G; Moghaddam A; Boccaccini AR J Tissue Eng Regen Med; 2019 Feb; 13(2):179-190. PubMed ID: 30536622 [TBL] [Abstract][Full Text] [Related]
15. Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. Thavornyutikarn B; Tesavibul P; Sitthiseripratip K; Chatarapanich N; Feltis B; Wright PFA; Turney TW Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1281-1288. PubMed ID: 28415417 [TBL] [Abstract][Full Text] [Related]
16. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Erol MM; Mouriňo V; Newby P; Chatzistavrou X; Roether JA; Hupa L; Boccaccini AR Acta Biomater; 2012 Feb; 8(2):792-801. PubMed ID: 22040685 [TBL] [Abstract][Full Text] [Related]
17. Bioglass-based scaffolds with carbon nanotube coating for bone tissue engineering. Meng D; Ioannou J; Boccaccini AR J Mater Sci Mater Med; 2009 Oct; 20(10):2139-44. PubMed ID: 19437104 [TBL] [Abstract][Full Text] [Related]
18. Fabrication, multi-scale characterization and in-vitro evaluation of porous hybrid bioactive glass polymer-coated scaffolds for bone tissue engineering. Chlanda A; Oberbek P; Heljak M; Kijeńska-Gawrońska E; Bolek T; Gloc M; John Ł; Janeta M; Woźniak MJ Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():516-523. PubMed ID: 30423736 [TBL] [Abstract][Full Text] [Related]
19. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications. Olami H; Zilberman M J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932 [TBL] [Abstract][Full Text] [Related]
20. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. Petrenko YA; Ivanov RV; Petrenko AY; Lozinsky VI J Mater Sci Mater Med; 2011 Jun; 22(6):1529-40. PubMed ID: 21526407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]