These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25215906)

  • 21. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells.
    Petrenko YA; Ivanov RV; Petrenko AY; Lozinsky VI
    J Mater Sci Mater Med; 2011 Jun; 22(6):1529-40. PubMed ID: 21526407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.
    Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L
    Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.
    Luo Y; Lode A; Wu C; Chang J; Gelinsky M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alginate composites for bone tissue engineering: a review.
    Venkatesan J; Bhatnagar I; Manivasagan P; Kang KH; Kim SK
    Int J Biol Macromol; 2015 Jan; 72():269-81. PubMed ID: 25020082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering.
    Li W; Wang H; Ding Y; Scheithauer EC; Goudouri OM; Grünewald A; Detsch R; Agarwal S; Boccaccini AR
    J Mater Chem B; 2015 Apr; 3(16):3367-3378. PubMed ID: 32262331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects.
    Zhang L; Ke X; Lin L; Xiao J; Yang X; Wang J; Yang G; Xu S; Gou Z; Shi Z
    Biomed Mater; 2017 Jun; 12(3):035010. PubMed ID: 28589920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds.
    Motealleh A; Eqtesadi S; Perera FH; Pajares A; Guiberteau F; Miranda P
    J Mech Behav Biomed Mater; 2016 Dec; 64():253-61. PubMed ID: 27522314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Porous bioceramics reinforced by coating gelatin.
    Liu B; Lin P; Shen Y; Dong Y
    J Mater Sci Mater Med; 2008 Mar; 19(3):1203-7. PubMed ID: 17701298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).
    Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V
    J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds.
    Oryan A; Kamali A; Moshiri A; Baharvand H; Daemi H
    Int J Biol Macromol; 2018 Feb; 107(Pt A):678-688. PubMed ID: 28919526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 45S5-Bioglass(®)-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay.
    Handel M; Hammer TR; Nooeaid P; Boccaccini AR; Hoefer D
    Tissue Eng Part A; 2013 Dec; 19(23-24):2703-12. PubMed ID: 23837884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.
    Florczyk SJ; Kim DJ; Wood DL; Zhang M
    J Biomed Mater Res A; 2011 Sep; 98(4):614-20. PubMed ID: 21721118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications.
    Touri R; Moztarzadeh F; Sadeghian Z; Bizari D; Tahriri M; Mozafari M
    Biomed Res Int; 2013; 2013():465086. PubMed ID: 24294609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering.
    Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR
    Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(D,L-lactic acid) coated 45S5 Bioglass-based scaffolds: processing and characterization.
    Chen QZ; Boccaccini AR
    J Biomed Mater Res A; 2006 Jun; 77(3):445-57. PubMed ID: 16444684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: a unifying approach based on ultrasonics, nanoindentation, and homogenization theory.
    Kariem H; Pastrama MI; Roohani-Esfahani SI; Pivonka P; Zreiqat H; Hellmich C
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():553-64. PubMed ID: 25492021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration.
    Poh PS; Hutmacher DW; Stevens MM; Woodruff MA
    Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioactive and mechanically strong Bioglass-poly(D,L-lactic acid) composite coatings on surgical sutures.
    Chen QZ; Blaker JJ; Boccaccini AR
    J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):354-63. PubMed ID: 16161126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.