These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25215958)

  • 1. Orbital origins of helices and magic electron counts in the Nowotny chimney ladders: the 18 - n rule and a path to incommensurability.
    Yannello VJ; Fredrickson DC
    Inorg Chem; 2014 Oct; 53(19):10627-31. PubMed ID: 25215958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Templating Structural Progessions in Intermetallics: How Chemical Pressure Directs Helix Formation in the Nowotny Chimney Ladders.
    Lu E; Fredrickson DC
    Inorg Chem; 2019 Apr; 58(7):4063-4066. PubMed ID: 30865438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nowotny chimney ladder phases: whence the 14 electron rule?
    Fredrickson DC; Lee S; Hoffmann R
    Inorg Chem; 2004 Oct; 43(20):6159-67. PubMed ID: 15446860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Nowotny chimney ladder phases: following the c(pseudo) clue toward an explanation of the 14 electron rule.
    Fredrickson DC; Lee S; Hoffmann R; Lin J
    Inorg Chem; 2004 Oct; 43(20):6151-8. PubMed ID: 15446859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defusing Complexity in Intermetallics: How Covalently Shared Electron Pairs Stabilize the FCC Variant Mo2Cu(x)Ga(6-x) (x ≈ 0.9).
    Kilduff BJ; Yannello VJ; Fredrickson DC
    Inorg Chem; 2015 Aug; 54(16):8103-10. PubMed ID: 26214504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes.
    Yannello VJ; Fredrickson DC
    Inorg Chem; 2015 Dec; 54(23):11385-98. PubMed ID: 26581113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallels in Structural Chemistry between the Molecular and Metallic Realms Revealed by Complex Intermetallic Phases.
    Fredrickson DC
    Acc Chem Res; 2018 Feb; 51(2):248-257. PubMed ID: 29384647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragmentation of the fluorite type in Fe8Al(17.4)Si(7.6): structural complexity in intermetallics dictated by the 18 electron rule.
    Fredrickson RT; Fredrickson DC
    Inorg Chem; 2012 Oct; 51(19):10341-9. PubMed ID: 22984870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.
    Lin Q; Miller GJ
    Acc Chem Res; 2018 Jan; 51(1):49-58. PubMed ID: 29251496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolobal analogies in intermetallics: the reversed approximation MO approach and applications to CrGa4- and Ir3Ge7-type phases.
    Yannello VJ; Kilduff BJ; Fredrickson DC
    Inorg Chem; 2014 Mar; 53(5):2730-41. PubMed ID: 24555770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold Polar Intermetallics: Structural Versatility through Exclusive Bonding Motifs.
    Smetana V; Rhodehouse M; Meyer G; Mudring AV
    Acc Chem Res; 2017 Nov; 50(11):2633-2641. PubMed ID: 29112375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of weakly ordered domains in intermetallics: the cooperative effects of atomic packing and electronics in Fe
    Vinokur AI; Hilleke KP; Fredrickson DC
    Acta Crystallogr A Found Adv; 2019 Mar; 75(Pt 2):297-306. PubMed ID: 30821262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-base chemistry in the formation of Mackay-type icosahedral clusters: μ3-acidity analysis of Sc-rich phases of the Sc-Ir system.
    Guo Y; Stacey TE; Fredrickson DC
    Inorg Chem; 2014 May; 53(10):5280-93. PubMed ID: 24801239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural acid-base chemistry in the metallic state: how μ3-neutralization drives interfaces and helices in Ti21Mn25.
    Stacey TE; Fredrickson DC
    Inorg Chem; 2013 Aug; 52(15):8349-59. PubMed ID: 23368733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.
    Berns VM; Fredrickson DC
    Inorg Chem; 2014 Oct; 53(19):10762-71. PubMed ID: 25238606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudogap Control of Physical and Chemical Properties in CeFeSi-Type Intermetallics.
    Wu J; Lu E; Li J; Lu Y; Kitano M; Fredrickson DC; Inoshita T; Hosono H
    Inorg Chem; 2019 Feb; 58(4):2848-2855. PubMed ID: 30729788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropic Control of Bonding, Guided by Chemical Pressure: Phase Transitions and 18-
    Lim A; Fredrickson DC
    Inorg Chem; 2023 Jul; 62(27):10833-10846. PubMed ID: 37350759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl-Klemm Concept to Nonclassical Electron-Rich Networks.
    A Papoian G ; Hoffmann R
    Angew Chem Int Ed Engl; 2000 Jul; 39(14):2408-2448. PubMed ID: 10941096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The modulated structure of Co3Al4Si2: incommensurability and Co-Co interactions in search of filled octadecets.
    Fredrickson RT; Fredrickson DC
    Inorg Chem; 2013 Mar; 52(6):3178-89. PubMed ID: 23445378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.