These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25216000)

  • 1. Metal-insulator transition in graphene on boron nitride.
    Titov M; Katsnelson MI
    Phys Rev Lett; 2014 Aug; 113(9):096801. PubMed ID: 25216000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Incommensurate-Commensurate Transition in Graphene-hBN Heterostructures via Optical Second Harmonic Generation.
    Stepanov EA; Semin SV; Woods CR; Vandelli M; Kimel AV; Novoselov KS; Katsnelson MI
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27758-27764. PubMed ID: 32442370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene on hexagonal boron nitride.
    Yankowitz M; Xue J; LeRoy BJ
    J Phys Condens Matter; 2014 Jul; 26(30):303201. PubMed ID: 24994551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical level statistics for weakly disordered graphene.
    Amanatidis E; Kleftogiannis I; Katsanos DE; Evangelou SN
    J Phys Condens Matter; 2014 Apr; 26(15):155601. PubMed ID: 24675743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of orbital hopping and perpendicular magnetic field in anisotropic phase transitions for Bernal bilayer graphene and hexagonal boron-nitride.
    T T Le P; Davoudiniya M; Yarmohammadi M
    Phys Chem Chem Phys; 2018 Dec; 21(1):238-245. PubMed ID: 30519687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Order-disorder transition in a two-dimensional boron-carbon-nitride alloy.
    Lu J; Zhang K; Liu XF; Zhang H; Sum TC; Castro Neto AH; Loh KP
    Nat Commun; 2013; 4():2681. PubMed ID: 24157959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of collective dynamical mass of Dirac fermions in graphene.
    Yoon H; Forsythe C; Wang L; Tombros N; Watanabe K; Taniguchi T; Hone J; Kim P; Ham D
    Nat Nanotechnol; 2014 Aug; 9(8):594-9. PubMed ID: 24952474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice match and lattice mismatch models of graphene on hexagonal boron nitride from first principles.
    Zhao X; Li L; Zhao M
    J Phys Condens Matter; 2014 Mar; 26(9):095002. PubMed ID: 24521541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.
    Karnatak P; Goswami S; Kochat V; Pal AN; Ghosh A
    Phys Rev Lett; 2014 Jul; 113(2):026601. PubMed ID: 25062215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method.
    Zhang C; Zhao S; Jin C; Koh AL; Zhou Y; Xu W; Li Q; Xiong Q; Peng H; Liu Z
    Nat Commun; 2015 Mar; 6():6519. PubMed ID: 25735443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of Interacting Dirac Fermions.
    Ma T; Zhang L; Chang CC; Hung HH; Scalettar RT
    Phys Rev Lett; 2018 Mar; 120(11):116601. PubMed ID: 29601744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-parameter scaling at the dirac point in graphene.
    Bardarson JH; Tworzydło J; Brouwer PW; Beenakker CW
    Phys Rev Lett; 2007 Sep; 99(10):106801. PubMed ID: 17930401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bipolar supercurrent in graphene.
    Heersche HB; Jarillo-Herrero P; Oostinga JB; Vandersypen LM; Morpurgo AF
    Nature; 2007 Mar; 446(7131):56-9. PubMed ID: 17330038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.
    Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP
    Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An open canvas--2D materials with defects, disorder, and functionality.
    Zou X; Yakobson BI
    Acc Chem Res; 2015 Jan; 48(1):73-80. PubMed ID: 25514190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulating behavior at the neutrality point in single-layer graphene.
    Amet F; Williams JR; Watanabe K; Taniguchi T; Goldhaber-Gordon D
    Phys Rev Lett; 2013 May; 110(21):216601. PubMed ID: 23745906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers.
    Gong Y; Shi G; Zhang Z; Zhou W; Jung J; Gao W; Ma L; Yang Y; Yang S; You G; Vajtai R; Xu Q; MacDonald AH; Yakobson BI; Lou J; Liu Z; Ajayan PM
    Nat Commun; 2014; 5():3193. PubMed ID: 24458370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.