These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25216274)

  • 1. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data.
    Brazhe AR; Marsh DJ; Holstein-Rathlou NH; Sosnovtseva O
    PLoS One; 2014; 9(9):e105879. PubMed ID: 25216274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of wavelet analysis in laser Doppler flowmetry time series.
    Bernjak A; Stefanovska A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4064-7. PubMed ID: 18002892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting physiological systems with laser speckle perfusion imaging of the renal cortex.
    Scully CG; Mitrou N; Braam B; Cupples WA; Chon KH
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(11):R929-39. PubMed ID: 23552498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet phase coherence analysis of the skin blood flow oscillations in human.
    Tankanag AV; Grinevich AA; Kirilina TV; Krasnikov GV; Piskunova GM; Chemeris NK
    Microvasc Res; 2014 Sep; 95():53-9. PubMed ID: 25026413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation of renal perfusion signals from laser speckle imaging into clusters with phase synchronized dynamics.
    Scully CG; Mitrou N; Braam B; Cupples WA; Chon KH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):1989-97. PubMed ID: 24956617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet Analysis of the Temporal Dynamics of the Laser Speckle Contrast in Human Skin.
    Mizeva I; Dremin V; Potapova E; Zherebtsov E; Kozlov I; Dunaev A
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1882-1889. PubMed ID: 31675309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations.
    Jan YK; Lee B; Liao F; Foreman RD
    Physiol Meas; 2012 Oct; 33(10):1733-45. PubMed ID: 23010955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization in renal microcirculation unveiled with high-resolution blood flow imaging.
    Postnov D; Marsh DJ; Cupples WA; Holstein-Rathlou NH; Sosnovtseva O
    Elife; 2022 May; 11():. PubMed ID: 35522041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelet analysis of the Laser Doppler signal to assess skin perfusion.
    Bagno A; Martini R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7374-7. PubMed ID: 26737995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The estimation of microcirculation state in cerebrovascular disorders by data of laser Doppler flowmetry and hemorheological parameters].
    Tikhomirova IA; Mikhaĭlova SG; Lychenko SV; Osliakova AO
    Fiziol Cheloveka; 2012; 38(1):69-76. PubMed ID: 22567838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of very low frequency oscillations in laser Doppler perfusion signals with a singular spectrum analysis.
    Azulay DO; Brain P; Sultana SR
    Microvasc Res; 2011 May; 81(3):239-44. PubMed ID: 21382383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studying the Persistence of Blood Flow Oscillations in Rat Kidneys].
    Mezentseva LV; Pertsov SS; Hugaeva VK
    Biofizika; 2015; 60(6):1186-90. PubMed ID: 26841515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved detectability of microcirculatory dynamics by laser speckle flowmetry.
    Postnov DD; Sosnovtseva O; Tuchin VV
    J Biophotonics; 2015 Oct; 8(10):790-4. PubMed ID: 26110702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique.
    Stefanovska A; Bracic M; Kvernmo HD
    IEEE Trans Biomed Eng; 1999 Oct; 46(10):1230-9. PubMed ID: 10513128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of optical flow algorithms to laser speckle imaging.
    Aminfar A; Davoodzadeh N; Aguilar G; Princevac M
    Microvasc Res; 2019 Mar; 122():52-59. PubMed ID: 30414869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging.
    Briers JD
    Physiol Meas; 2001 Nov; 22(4):R35-66. PubMed ID: 11761081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the adaptive wavelet transform for analysis of blood flow oscillations in the human skin.
    Tankanag A; Chemeris N
    Phys Med Biol; 2008 Nov; 53(21):5967-76. PubMed ID: 18836220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of transient renal autoregulatory mechanisms using time-frequency spectral techniques.
    Wang H; Siu K; Ju K; Moore LC; Chon KH
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1033-9. PubMed ID: 15977733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [2-dimensional mapping and retinal and papillary microcirculation using scanning laser Doppler flowmetry].
    Michelson G; Groh M; Langhans M; Schmauss B
    Klin Monbl Augenheilkd; 1995 Sep; 207(3):180-90. PubMed ID: 7474787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning of speckle statistics for in vivo and noninvasive characterization of cutaneous wound regions using laser speckle contrast imaging.
    Basak K; Dey G; Mahadevappa M; Mandal M; Sheet D; Dutta PK
    Microvasc Res; 2016 Sep; 107():6-16. PubMed ID: 27131831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.