These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 2521635)
1. Molecular cloning and expression of cDNA encoding the 53,000-dalton glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum. Leberer E; Charuk JH; Clarke DM; Green NM; Zubrzycka-Gaarn E; MacLennan DH J Biol Chem; 1989 Feb; 264(6):3484-93. PubMed ID: 2521635 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning of cDNA encoding a 55-kDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. Fliegel L; Newton E; Burns K; Michalak M J Biol Chem; 1990 Sep; 265(26):15496-502. PubMed ID: 1697592 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum. Leberer E; Charuk JH; Green NM; MacLennan DH Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6047-51. PubMed ID: 2762314 [TBL] [Abstract][Full Text] [Related]
4. A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. Gunteski-Hamblin AM; Greeb J; Shull GE J Biol Chem; 1988 Oct; 263(29):15032-40. PubMed ID: 2844797 [TBL] [Abstract][Full Text] [Related]
5. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. Burk SE; Lytton J; MacLennan DH; Shull GE J Biol Chem; 1989 Nov; 264(31):18561-8. PubMed ID: 2553713 [TBL] [Abstract][Full Text] [Related]
6. Purification, calcium binding properties, and ultrastructural localization of the 53,000- and 160,000 (sarcalumenin)-dalton glycoproteins of the sarcoplasmic reticulum. Leberer E; Timms BG; Campbell KP; MacLennan DH J Biol Chem; 1990 Jun; 265(17):10118-24. PubMed ID: 2112542 [TBL] [Abstract][Full Text] [Related]
7. Chemical crosslinking and enzyme kinetics provide no evidence for a regulatory role for the 53 kDa glycoprotein of sarcoplasmic reticulum in calcium transport. Burgess AJ; Matthews I; Grimes EA; Mata AM; Munkonge FM; Lee AG; East JM Biochim Biophys Acta; 1991 Apr; 1064(1):139-47. PubMed ID: 1827350 [TBL] [Abstract][Full Text] [Related]
8. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Kutchai H; Campbell KP Biochemistry; 1989 May; 28(11):4830-9. PubMed ID: 2527558 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. Hofmann SL; Goldstein JL; Orth K; Moomaw CR; Slaughter CA; Brown MS J Biol Chem; 1989 Oct; 264(30):18083-90. PubMed ID: 2808365 [TBL] [Abstract][Full Text] [Related]
10. Deduced amino acid sequence and E1-E2 equilibrium of the sarcoplasmic reticulum Ca(2+)-ATPase of frog skeletal muscle. Comparison with the Ca(2+)-ATPase of rabbit fast twitch muscle. Vilsen B; Andersen JP FEBS Lett; 1992 Jul; 306(2-3):213-8. PubMed ID: 1386027 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. Zorzato F; Fujii J; Otsu K; Phillips M; Green NM; Lai FA; Meissner G; MacLennan DH J Biol Chem; 1990 Feb; 265(4):2244-56. PubMed ID: 2298749 [TBL] [Abstract][Full Text] [Related]
12. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Fliegel L; Ohnishi M; Carpenter MR; Khanna VK; Reithmeier RA; MacLennan DH Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1167-71. PubMed ID: 3469659 [TBL] [Abstract][Full Text] [Related]
13. Identification of 30 kDa calsequestrin-binding protein, which regulates calcium release from sarcoplasmic reticulum of rabbit skeletal muscle. Yamaguchi N; Kasai M Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):541-7. PubMed ID: 9794793 [TBL] [Abstract][Full Text] [Related]
14. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. Jones LR; Zhang L; Sanborn K; Jorgensen AO; Kelley J J Biol Chem; 1995 Dec; 270(51):30787-96. PubMed ID: 8530521 [TBL] [Abstract][Full Text] [Related]
15. Monoclonal antibodies to the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum identify polymorphic forms of the enzyme and indicate the presence in the enzyme of a classical high-affinity Ca2+ binding site. Zubrzycka-Gaarn E; MacDonald G; Phillips L; Jorgensen AO; MacLennan DH J Bioenerg Biomembr; 1984 Dec; 16(5-6):441-64. PubMed ID: 6152660 [TBL] [Abstract][Full Text] [Related]
17. Structure of a Plasmodium yoelii gene-encoded protein homologous to the Ca(2+)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum. Murakami K; Tanabe K; Takada S J Cell Sci; 1990 Nov; 97 ( Pt 3)():487-95. PubMed ID: 2150071 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. Fliegel L; Burns K; MacLennan DH; Reithmeier RA; Michalak M J Biol Chem; 1989 Dec; 264(36):21522-8. PubMed ID: 2600080 [TBL] [Abstract][Full Text] [Related]
19. The regulation of Ca2+ transport by fast skeletal muscle sarcoplasmic reticulum. Role of calmodulin and of the 53,000-dalton glycoprotein. Chiesi M; Carafoli E J Biol Chem; 1982 Jan; 257(2):984-91. PubMed ID: 6459325 [TBL] [Abstract][Full Text] [Related]
20. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. Scott BT; Simmerman HK; Collins JH; Nadal-Ginard B; Jones LR J Biol Chem; 1988 Jun; 263(18):8958-64. PubMed ID: 3379055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]