BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25216389)

  • 1. Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene.
    Yu YX
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16267-75. PubMed ID: 25216389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxocarbon-functionalized graphene as a lithium-ion battery cathode: a first-principles investigation.
    Wang Z; Li S; Zhang Y; Xu H
    Phys Chem Chem Phys; 2018 Mar; 20(11):7447-7456. PubMed ID: 29488988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS
    J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organics on oxidic metal surfaces: a first-principles DFT study of PMDA and ODA fragments on the pristine and mildly oxidized surfaces of Cu(111).
    Park JH; Lee JH; Soon A
    Phys Chem Chem Phys; 2016 Aug; 18(31):21893-902. PubMed ID: 27440308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the work function of stepped metal surfaces by adsorption of organic molecules.
    Jiang Y; Li J; Su G; Ferri N; Liu W; Tkatchenko A
    J Phys Condens Matter; 2017 May; 29(20):204001. PubMed ID: 28345536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the physisorption of water on graphene: a CCSD(T) study.
    Voloshina E; Usvyat D; Schütz M; Dedkov Y; Paulus B
    Phys Chem Chem Phys; 2011 Jul; 13(25):12041-7. PubMed ID: 21625710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study.
    Darvish Ganji M; Hosseini-Khah SM; Amini-Tabar Z
    Phys Chem Chem Phys; 2015 Jan; 17(4):2504-11. PubMed ID: 25490973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Active Macrocycles for Organic Rechargeable Batteries.
    Kim DJ; Hermann KR; Prokofjevs A; Otley MT; Pezzato C; Owczarek M; Stoddart JF
    J Am Chem Soc; 2017 May; 139(19):6635-6643. PubMed ID: 28437104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials.
    Zhao LB; Gao ST; He R; Shen W; Li M
    ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of DNA nucleobases on single-layer Ti
    Tayo BO; Walkup MA; Caliskan S
    AIP Adv; 2023 Aug; 13(8):085213. PubMed ID: 37575976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations.
    Xu P; Tang Q; Zhou Z
    Nanotechnology; 2013 Aug; 24(30):305401. PubMed ID: 23818035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Van der Waals-corrected density functional theory: benchmarking for hydrogen-nanotube and nanotube-nanotube interactions.
    Du AJ; Smith SC
    Nanotechnology; 2005 Oct; 16(10):2118-23. PubMed ID: 20817982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of van der Waals inclusive density functional theory methods for layered electroactive materials.
    Lozano A; Escribano B; Akhmatskaya E; Carrasco J
    Phys Chem Chem Phys; 2017 Apr; 19(15):10133-10139. PubMed ID: 28368058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of polymers with reduced graphene oxide: van der Waals binding energies of benzene on graphene with defects.
    Hassan M; Walter M; Moseler M
    Phys Chem Chem Phys; 2014 Jan; 16(1):33-7. PubMed ID: 24226810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing Characteristics of a Graphene-like Boron Carbide Monolayer towards Selected Toxic Gases.
    Mahabal MS; Deshpande MD; Hussain T; Ahuja R
    Chemphyschem; 2015 Nov; 16(16):3511-7. PubMed ID: 26345696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio and semi-empirical van der Waals study of graphene-boron nitride interaction from a molecular point of view.
    Caciuc V; Atodiresei N; Callsen M; Lazić P; Blügel S
    J Phys Condens Matter; 2012 Oct; 24(42):424214. PubMed ID: 23032913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: performance of density functionals with van der Waals interactions.
    Hanke F; Dyer MS; Björk J; Persson M
    J Phys Condens Matter; 2012 Oct; 24(42):424217. PubMed ID: 23031831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions.
    Amft M; Lebègue S; Eriksson O; Skorodumova NV
    J Phys Condens Matter; 2011 Oct; 23(39):395001. PubMed ID: 21891833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 capture by metal-organic frameworks with van der Waals density functionals.
    Poloni R; Smit B; Neaton JB
    J Phys Chem A; 2012 May; 116(20):4957-64. PubMed ID: 22519821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.