BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25216490)

  • 1. Red blood cell cluster separation from digital images for use in sickle cell disease.
    González-Hidalgo M; Guerrero-Peña FA; Herold-García S; Jaume-I-Capó A; Marrero-Fernández PD
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1514-25. PubMed ID: 25216490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis support of sickle cell anemia by classifying red blood cell shape in peripheral blood images.
    Delgado-Font W; Escobedo-Nicot M; González-Hidalgo M; Herold-Garcia S; Jaume-I-Capó A; Mir A
    Med Biol Eng Comput; 2020 Jun; 58(6):1265-1284. PubMed ID: 32222951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte shape classification using integral-geometry-based methods.
    Gual-Arnau X; Herold-García S; Simó A
    Med Biol Eng Comput; 2015 Jul; 53(7):623-33. PubMed ID: 25773368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep convolutional neural network for classification of red blood cells in sickle cell anemia.
    Xu M; Papageorgiou DP; Abidi SZ; Dao M; Zhao H; Karniadakis GE
    PLoS Comput Biol; 2017 Oct; 13(10):e1005746. PubMed ID: 29049291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Automated Methods for the Detection of Sickle Cell Disease.
    Das PK; Meher S; Panda R; Abraham A
    IEEE Rev Biomed Eng; 2020; 13():309-324. PubMed ID: 31107662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The added value of digital morphological analysis in the evaluation of peripheral blood films: the report of an UKNEQAS external quality assessment sample.
    Rosetti M; De la Salle B; Farneti G; Clementoni A; Poletti G; Dorizzi RM
    Ann Hematol; 2022 Mar; 101(3):729-730. PubMed ID: 34245347
    [No Abstract]   [Full Text] [Related]  

  • 7. Classification of red blood cells as normal, sickle, or other abnormal, using a single image analysis feature.
    Wheeless LL; Robinson RD; Lapets OP; Cox C; Rubio A; Weintraub M; Benjamin LJ
    Cytometry; 1994 Oct; 17(2):159-66. PubMed ID: 7835166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphologic studies of sickle erythrocytes by image analysis.
    Horiuchi K; Ohata J; Hirano Y; Asakura T
    J Lab Clin Med; 1990 May; 115(5):613-20. PubMed ID: 2341764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.
    Prinyakupt J; Pluempitiwiriyawej C
    Biomed Eng Online; 2015 Jun; 14():63. PubMed ID: 26123131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and red blood cell automated counting from blood smear images using computer-aided system.
    Acharya V; Kumar P
    Med Biol Eng Comput; 2018 Mar; 56(3):483-489. PubMed ID: 28815426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Ensemble Rule Learning Approach for Automated Morphological Classification of Erythrocytes.
    Maity M; Mungle T; Dhane D; Maiti AK; Chakraborty C
    J Med Syst; 2017 Apr; 41(4):56. PubMed ID: 28247304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative microscopy approach for shape-based erythrocytes characterization in anaemia.
    Das DK; Chakraborty C; Mitra B; Maiti AK; Ray AK
    J Microsc; 2013 Feb; 249(2):136-49. PubMed ID: 23252834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Healthy and unhealthy red blood cell detection in human blood smears using neural networks.
    Elsalamony HA
    Micron; 2016 Apr; 83():32-41. PubMed ID: 26867209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gel-filtration of sickle erythrocytes: separation based on cell deformability.
    Baerlocher GM; Meiselman HJ; Reinhart WH
    Clin Hemorheol Microcirc; 2001; 24(1):11-8. PubMed ID: 11345229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of fractal dimension and shape analysis as discriminators of erythrocyte abnormalities. A new approach to a reproducible diagnostic tool.
    Elblbesy MA; Attia M
    Math Biosci Eng; 2020 Jul; 17(5):4706-4717. PubMed ID: 33120525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of red and white blood cells from microscopic blood images using a region proposal approach.
    Di Ruberto C; Loddo A; Putzu L
    Comput Biol Med; 2020 Jan; 116():103530. PubMed ID: 31778895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images.
    Petrović N; Moyà-Alcover G; Jaume-I-Capó A; González-Hidalgo M
    Comput Biol Med; 2020 Nov; 126():104027. PubMed ID: 33075715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic digital ECG signal extraction and normal QRS recognition from real scene ECG images.
    Wang S; Zhang S; Li Z; Huang L; Wei Z
    Comput Methods Programs Biomed; 2020 Apr; 187():105254. PubMed ID: 31830698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithm.
    Alomari YM; Sheikh Abdullah SN; Zaharatul Azma R; Omar K
    Comput Math Methods Med; 2014; 2014():979302. PubMed ID: 24803955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on statistical method of distribution for erythrocyte morphological features by computerized image processing].
    Hao B; Luo J; Yin G; Zheng C; Zheng Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):429-32, 443. PubMed ID: 11211832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.