BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25216511)

  • 1. Spatiotemporally controlled microchannels of periodontal mimic scaffolds.
    Park CH; Kim KH; Rios HF; Lee YM; Giannobile WV; Seol YJ
    J Dent Res; 2014 Dec; 93(12):1304-12. PubMed ID: 25216511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of zein and Shuanghuangbu for periodontal tissue engineering.
    Yan-Zhi X; Jing-Jing W; Chen YP; Liu J; Li N; Yang FY
    Int J Oral Sci; 2010 Sep; 2(3):142-8. PubMed ID: 21125792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering.
    Liao F; Chen Y; Li Z; Wang Y; Shi B; Gong Z; Cheng X
    J Mater Sci Mater Med; 2010 Feb; 21(2):489-96. PubMed ID: 19908128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure.
    Costa PF; Vaquette C; Zhang Q; Reis RL; Ivanovski S; Hutmacher DW
    J Clin Periodontol; 2014 Mar; 41(3):283-94. PubMed ID: 24304192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration.
    Varoni EM; Vijayakumar S; Canciani E; Cochis A; De Nardo L; Lodi G; Rimondini L; Cerruti M
    J Dent Res; 2018 Mar; 97(3):303-311. PubMed ID: 29045803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering.
    Wu C; Zhou Y; Lin C; Chang J; Xiao Y
    Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering three-dimensional constructs of the periodontal ligament in hyaluronan-gelatin hydrogel films and a mechanically active environment.
    Saminathan A; Vinoth KJ; Low HH; Cao T; Meikle MC
    J Periodontal Res; 2013 Dec; 48(6):790-801. PubMed ID: 23581542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs.
    Zhang Y; Miron RJ; Li S; Shi B; Sculean A; Cheng X
    J Clin Periodontol; 2015 Mar; 42(3):262-71. PubMed ID: 25580515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of bilayer chitosan-gelatin scaffolds.
    Mao JS; Zhao LG; Yin YJ; Yao KD
    Biomaterials; 2003 Mar; 24(6):1067-74. PubMed ID: 12504529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds.
    Park CH; Rios HF; Jin Q; Sugai JV; Padial-Molina M; Taut AD; Flanagan CL; Hollister SJ; Giannobile WV
    Biomaterials; 2012 Jan; 33(1):137-45. PubMed ID: 21993234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterial-Based Approaches for Regeneration of Periodontal Ligament and Cementum Using 3D Platforms.
    Park CH
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31491973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel porcine acellular dermal matrix scaffold used in periodontal regeneration.
    Guo J; Chen H; Wang Y; Cao CB; Guan GQ
    Int J Oral Sci; 2013 Mar; 5(1):37-43. PubMed ID: 23492902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melt electrowriting scaffolds with fibre-guiding features for periodontal attachment.
    Staples R; Ivanovski S; Vaswani K; Vaquette C
    Acta Biomater; 2024 May; 180():337-357. PubMed ID: 38583749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomaterials; 2010 Aug; 31(22):5825-35. PubMed ID: 20452015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailored Biomaterials for Therapeutic Strategies Applied in Periodontal Tissue Engineering.
    Seciu AM; Craciunescu O; Stanciuc AM; Zarnescu O
    Stem Cells Dev; 2019 Aug; 28(15):963-973. PubMed ID: 31020906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphasic scaffolds for periodontal tissue engineering.
    Ivanovski S; Vaquette C; Gronthos S; Hutmacher DW; Bartold PM
    J Dent Res; 2014 Dec; 93(12):1212-21. PubMed ID: 25139362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.
    Pot MW; Faraj KA; Adawy A; van Enckevort WJ; van Moerkerk HT; Vlieg E; Daamen WF; van Kuppevelt TH
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8495-505. PubMed ID: 25822583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds.
    Samourides A; Browning L; Hearnden V; Chen B
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.