BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25216680)

  • 1. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures.
    Zoll S; Stanchev S; Began J; Skerle J; Lepšík M; Peclinovská L; Majer P; Strisovsky K
    EMBO J; 2014 Oct; 33(20):2408-21. PubMed ID: 25216680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Untangling structure-function relationships in the rhomboid family of intramembrane proteases.
    Brooks CL; Lemieux MJ
    Biochim Biophys Acta; 2013 Dec; 1828(12):2862-72. PubMed ID: 24099005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural basis for catalysis and substrate specificity of a rhomboid protease.
    Vinothkumar KR; Strisovsky K; Andreeva A; Christova Y; Verhelst S; Freeman M
    EMBO J; 2010 Nov; 29(22):3797-809. PubMed ID: 20890268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency.
    Zhou Y; Moin SM; Urban S; Zhang Y
    Structure; 2012 Jul; 20(7):1255-63. PubMed ID: 22705210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does the exosite of rhomboid protease affect substrate processing and inhibition?
    Shokhen M; Albeck A
    Protein Sci; 2017 Dec; 26(12):2355-2366. PubMed ID: 28884847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells.
    Urban S; Baker RP
    Biol Chem; 2008 Aug; 389(8):1107-15. PubMed ID: 18979634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis.
    Cho S; Dickey SW; Urban S
    Mol Cell; 2016 Feb; 61(3):329-340. PubMed ID: 26805573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease.
    Xue Y; Ha Y
    J Biol Chem; 2013 Jun; 288(23):16645-16654. PubMed ID: 23609444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rhomboid protease GlpG has weak interaction energies in its active site hydrogen bond network.
    Gaffney KA; Hong H
    J Gen Physiol; 2019 Mar; 151(3):282-291. PubMed ID: 30420443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry.
    Wu Z; Yan N; Feng L; Oberstein A; Yan H; Baker RP; Gu L; Jeffrey PD; Urban S; Shi Y
    Nat Struct Mol Biol; 2006 Dec; 13(12):1084-91. PubMed ID: 17099694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a rhomboid family intramembrane protease.
    Wang Y; Zhang Y; Ha Y
    Nature; 2006 Nov; 444(7116):179-80. PubMed ID: 17051161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and mechanism of rhomboid protease.
    Ha Y; Akiyama Y; Xue Y
    J Biol Chem; 2013 May; 288(22):15430-6. PubMed ID: 23585569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate.
    Baker RP; Young K; Feng L; Shi Y; Urban S
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8257-62. PubMed ID: 17463085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms by Which Lipids Influence Conformational Dynamics of the GlpG Intramembrane Protease.
    Bondar AN
    J Phys Chem B; 2019 May; 123(19):4159-4172. PubMed ID: 31059259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane.
    Maegawa S; Ito K; Akiyama Y
    Biochemistry; 2005 Oct; 44(41):13543-52. PubMed ID: 16216077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease.
    Lazareno-Saez C; Arutyunova E; Coquelle N; Lemieux MJ
    J Mol Biol; 2013 Apr; 425(7):1127-42. PubMed ID: 23353827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Dynamics of the Rhomboid Protease GlpG in Liposomes Studied by Solid-State NMR.
    Shi C; Öster C; Bohg C; Li L; Lange S; Chevelkov V; Lange A
    J Am Chem Soc; 2019 Oct; 141(43):17314-17321. PubMed ID: 31603315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease.
    Akiyama Y; Maegawa S
    Mol Microbiol; 2007 May; 64(4):1028-37. PubMed ID: 17501925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhomboid protease dynamics and lipid interactions.
    Bondar AN; del Val C; White SH
    Structure; 2009 Mar; 17(3):395-405. PubMed ID: 19278654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity Assays for Rhomboid Proteases.
    Arutyunova E; Strisovsky K; Lemieux MJ
    Methods Enzymol; 2017; 584():395-437. PubMed ID: 28065272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.