BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25217027)

  • 1. Responses of unsaturated Pseudomonas putida CZ1 biofilms to environmental stresses in relation to the EPS composition and surface morphology.
    Lin H; Chen G; Long D; Chen X
    World J Microbiol Biotechnol; 2014 Dec; 30(12):3081-90. PubMed ID: 25217027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between copper and extracellular nucleic acids in the EPS of unsaturated Pseudomonas putida CZ1 biofilm.
    Lin H; Wang C; Zhao H; Chen G; Chen X
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):24172-24180. PubMed ID: 29948696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation.
    Baumgarten T; Sperling S; Seifert J; von Bergen M; Steiniger F; Wick LY; Heipieper HJ
    Appl Environ Microbiol; 2012 Sep; 78(17):6217-24. PubMed ID: 22752175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Pseudomonas putida biofilm and associated extracellular polymeric substances from stainless steel by alkali cleaning.
    Antoniou K; Frank JF
    J Food Prot; 2005 Feb; 68(2):277-81. PubMed ID: 15726969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.
    Xue Z; Lee WH; Coburn KM; Seo Y
    Environ Sci Technol; 2014 Apr; 48(7):3832-9. PubMed ID: 24575887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms.
    Auerbach ID; Sorensen C; Hansma HG; Holden PA
    J Bacteriol; 2000 Jul; 182(13):3809-15. PubMed ID: 10850998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms.
    Lin H; Wang C; Zhao H; Chen G; Chen X
    Environ Pollut; 2020 Aug; 263(Pt A):114485. PubMed ID: 32298938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated
    Chen G; Lin H; Chen X
    J Microbiol Biotechnol; 2016 Dec; 26(12):2116-2126. PubMed ID: 27558435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm.
    Liu BH; Yu LC
    Colloids Surf B Biointerfaces; 2017 Feb; 150():98-105. PubMed ID: 27907861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions.
    Chang WS; van de Mortel M; Nielsen L; Nino de Guzman G; Li X; Halverson LJ
    J Bacteriol; 2007 Nov; 189(22):8290-9. PubMed ID: 17601783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure.
    Svenningsen NB; Martínez-García E; Nicolaisen MH; de Lorenzo V; Nybroe O
    Microbiology (Reading); 2018 Jun; 164(6):883-888. PubMed ID: 29738306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the biofilm matrix in structural development.
    Cogan NG; Keener JP
    Math Med Biol; 2004 Jun; 21(2):147-66. PubMed ID: 15228104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity.
    Thuptimdang P; Limpiyakorn T; McEvoy J; Prüß BM; Khan E
    J Hazard Mater; 2015 Jun; 290():127-33. PubMed ID: 25756827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable metal resistance of P. putida CZ1 biofilms in different environments suggests its remediation application scope.
    Lin H; Chen G; Zhao H; Cao Y
    J Environ Manage; 2021 Nov; 298():113458. PubMed ID: 34358938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of toxicity of silver nanoparticles on Pseudomonas putida biofilm structure.
    Thuptimdang P; Limpiyakorn T; Khan E
    Chemosphere; 2017 Dec; 188():199-207. PubMed ID: 28886554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between extracellular matrix components of Pseudomonas putida biofilms.
    Martínez-Gil M; Quesada JM; Ramos-González MI; Soriano MI; de Cristóbal RE; Espinosa-Urgel M
    Res Microbiol; 2013 Jun; 164(5):382-9. PubMed ID: 23562948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heavy-metal-resistant bacteria on enhanced metal uptake and translocation of the Cu-tolerant plant, Elsholtzia splendens.
    Xu C; Chen X; Duan D; Peng C; Le T; Shi J
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5070-81. PubMed ID: 25510610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms.
    Zhang W; Dai W; Tsai SM; Zehnder SM; Sarntinoranont M; Angelini TE
    Soft Matter; 2015 May; 11(18):3612-7. PubMed ID: 25797701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of NaCl, pH, and phosphate on biofilm formation and exopolysaccharide production by high biofilm producers of Bacillus strains.
    Çam S; Badıllı İ
    Folia Microbiol (Praha); 2024 Jun; 69(3):613-624. PubMed ID: 37897595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X-ray fluorescence microscopy.
    Chen G; Chen X; Yang Y; Hay AG; Yu X; Chen Y
    Appl Environ Microbiol; 2011 Jul; 77(14):4719-27. PubMed ID: 21642411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.