These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2521712)

  • 1. [Calcium phosphate ceramics in orthopedic surgery].
    Passuti N; Daculsi G
    Presse Med; 1989 Jan 7-14; 18(1):28-31. PubMed ID: 2521712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Filling of bone defects using biphasic macroporous calcium phosphate ceramic. Apropos of 23 cases].
    Gouin F; Delécrin J; Passuti N; Touchais S; Poirier P; Bainvel JV
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(1):59-65. PubMed ID: 7569179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora.
    Kawamura H; Ito A; Muramatsu T; Miyakawa S; Ochiai N; Tateishi T
    J Biomed Mater Res A; 2003 Jun; 65(4):468-74. PubMed ID: 12761837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies.
    Nade S; Armstrong L; McCartney E; Baggaley B
    Clin Orthop Relat Res; 1983 Dec; (181):255-63. PubMed ID: 6315286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bone transplantation and bone replacement materials].
    Patka P; Haarman HJ; Bakker FC
    Ned Tijdschr Geneeskd; 1998 Apr; 142(16):893-6. PubMed ID: 9623184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells.
    Wu C; Han P; Liu X; Xu M; Tian T; Chang J; Xiao Y
    Acta Biomater; 2014 Jan; 10(1):428-38. PubMed ID: 24157695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study].
    Urban K; Povýsil C; Spelda S
    Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The regenerative ability of the iliac crest following spongiosa removal in man--induction by phosphate ceramics? I].
    Roesgen M
    Unfallchirurgie; 1990 Oct; 16(5):258-65. PubMed ID: 2260236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice.
    Barradas AM; Yuan H; van der Stok J; Le Quang B; Fernandes H; Chaterjea A; Hogenes MC; Shultz K; Donahue LR; van Blitterswijk C; de Boer J
    Biomaterials; 2012 Aug; 33(23):5696-705. PubMed ID: 22594974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spinal fusion.
    Kai T; Shao-qing G; Geng-ting D
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1653-8. PubMed ID: 12897487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [An experimental study on the osteoconductive properties of porous calcium phosphate glass ceramics].
    Wada M
    Nihon Seikeigeka Gakkai Zasshi; 1989 Nov; 63(11):1368-78. PubMed ID: 2614166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular mechanisms of calcium phosphate ceramic degradation.
    Heymann D; Pradal G; Benahmed M
    Histol Histopathol; 1999 Jul; 14(3):871-7. PubMed ID: 10425557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Electron microscopic study of a macroporous calcium phosphate ceramic implanted in an osseous site].
    Grizon F; Filmon R; Chappard D; Rebel A; Basle MF
    Bull Assoc Anat (Nancy); 1994 Mar; 78(240):39-45. PubMed ID: 8054695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model.
    Fellah BH; Gauthier O; Weiss P; Chappard D; Layrolle P
    Biomaterials; 2008 Mar; 29(9):1177-88. PubMed ID: 18093645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes.
    Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA
    J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption.
    Mastrogiacomo M; Papadimitropoulos A; Cedola A; Peyrin F; Giannoni P; Pearce SG; Alini M; Giannini C; Guagliardi A; Cancedda R
    Biomaterials; 2007 Mar; 28(7):1376-84. PubMed ID: 17134749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture.
    Zhang J; Barbieri D; ten Hoopen H; de Bruijn JD; van Blitterswijk CA; Yuan H
    J Biomed Mater Res A; 2015 Mar; 103(3):1188-99. PubMed ID: 25044678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of autogenous marrow and calcitonin on reactions to a ceramic.
    McDavid PT; Boone ME; Kafrawy AH; Mitchell DF
    J Dent Res; 1979 May; 58(5):1478-83. PubMed ID: 374436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.