These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 25217636)
1. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. Rodriguez F; Lillington J; Johnson S; Timmel CR; Lea SM; Berks BC J Biol Chem; 2014 Nov; 289(45):30889-99. PubMed ID: 25217636 [TBL] [Abstract][Full Text] [Related]
2. Mutagenesis of putative catalytic and regulatory residues of Streptomyces chromofuscus phospholipase D differentially modifies phosphatase and phosphodiesterase activities. Zambonelli C; Casali M; Roberts MF J Biol Chem; 2003 Dec; 278(52):52282-9. PubMed ID: 14557260 [TBL] [Abstract][Full Text] [Related]
3. Identification of Two Phosphate Starvation-induced Wall Teichoic Acid Hydrolases Provides First Insights into the Degradative Pathway of a Key Bacterial Cell Wall Component. Myers CL; Li FK; Koo BM; El-Halfawy OM; French S; Gross CA; Strynadka NC; Brown ED J Biol Chem; 2016 Dec; 291(50):26066-26082. PubMed ID: 27780866 [TBL] [Abstract][Full Text] [Related]
4. Localisation of the cell wall-associated phosphodiesterase PhoD of Bacillus subtilis. Müller JP; Wagner M FEMS Microbiol Lett; 1999 Nov; 180(2):287-96. PubMed ID: 10556724 [TBL] [Abstract][Full Text] [Related]
5. A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD. Eder S; Shi L; Jensen K; Yamane K; Hulett FM Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():2041-7. PubMed ID: 8760916 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of MtnX phosphatase from Bacillus subtilis at 2.0 angstroms resolution provides a structural basis for bipartite phosphomonoester hydrolysis of 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate. Xu Q; Saikatendu KS; Krishna SS; McMullan D; Abdubek P; Agarwalla S; Ambing E; Astakhova T; Axelrod HL; Carlton D; Chiu HJ; Clayton T; DiDonato M; Duan L; Elsliger MA; Feuerhelm J; Grzechnik SK; Hale J; Hampton E; Han GW; Haugen J; Jaroszewski L; Jin KK; Klock HE; Knuth MW; Koesema E; Miller MD; Morse AT; Nigoghossian E; Okach L; Oommachen S; Paulsen J; Reyes R; Rife CL; Schwarzenbacher R; van den Bedem H; White A; Wolf G; Hodgson KO; Wooley J; Deacon AM; Godzik A; Lesley SA; Wilson IA Proteins; 2007 Nov; 69(2):433-9. PubMed ID: 17654724 [No Abstract] [Full Text] [Related]
7. An iron-dependent bacterial phospholipase D reminiscent of purple acid phosphatases. Zambonelli C; Roberts MF J Biol Chem; 2003 Apr; 278(16):13706-11. PubMed ID: 12519726 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of a bifunctional deaminase and reductase from Bacillus subtilis involved in riboflavin biosynthesis. Chen SC; Chang YC; Lin CH; Lin CH; Liaw SH J Biol Chem; 2006 Mar; 281(11):7605-13. PubMed ID: 16308316 [TBL] [Abstract][Full Text] [Related]
9. Structural and biochemical analyses of the metallo-β-lactamase fold protein YhfI from Bacillus subtilis. Na HW; Namgung B; Song WS; Yoon SI Biochem Biophys Res Commun; 2019 Oct; 519(1):35-40. PubMed ID: 31481231 [TBL] [Abstract][Full Text] [Related]
10. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Kageyama H; Tripathi K; Rai AK; Cha-Um S; Waditee-Sirisattha R; Takabe T Appl Environ Microbiol; 2011 Aug; 77(15):5178-83. PubMed ID: 21666012 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae, unique metal-dependent tyrosine phosphatases. Kim HS; Lee SJ; Yoon HJ; An DR; Kim DJ; Kim SJ; Suh SW J Struct Biol; 2011 Sep; 175(3):442-50. PubMed ID: 21605684 [TBL] [Abstract][Full Text] [Related]
12. Expression and characterization of a heterodimer of Streptomyces chromofuscus phospholipase D. Yang H; Roberts MF Biochim Biophys Acta; 2004 Dec; 1703(1):43-51. PubMed ID: 15588701 [TBL] [Abstract][Full Text] [Related]
13. A catalytic mechanism revealed by the crystal structures of the imidazolonepropionase from Bacillus subtilis. Yu Y; Liang YH; Brostromer E; Quan JM; Panjikar S; Dong YH; Su XD J Biol Chem; 2006 Dec; 281(48):36929-36. PubMed ID: 16990261 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of a phosphatase-resistant mutant of sporulation response regulator Spo0F from Bacillus subtilis. Madhusudan ; Zapf J; Whiteley JM; Hoch JA; Xuong NH; Varughese KI Structure; 1996 Jun; 4(6):679-90. PubMed ID: 8805550 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. Klabunde T; Sträter N; Fröhlich R; Witzel H; Krebs B J Mol Biol; 1996 Jun; 259(4):737-48. PubMed ID: 8683579 [TBL] [Abstract][Full Text] [Related]
16. Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. Pop OI; Westermann M; Volkmer-Engert R; Schulz D; Lemke C; Schreiber S; Gerlach R; Wetzker R; Müller JP J Biol Chem; 2003 Oct; 278(40):38428-36. PubMed ID: 12867413 [TBL] [Abstract][Full Text] [Related]
17. Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Apel AK; Sola-Landa A; Rodríguez-García A; Martín JF Microbiology (Reading); 2007 Oct; 153(Pt 10):3527-3537. PubMed ID: 17906150 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Davies DR; Interthal H; Champoux JJ; Hol WG Structure; 2002 Feb; 10(2):237-48. PubMed ID: 11839309 [TBL] [Abstract][Full Text] [Related]
19. Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C. Delumeau O; Dutta S; Brigulla M; Kuhnke G; Hardwick SW; Völker U; Yudkin MD; Lewis RJ J Biol Chem; 2004 Sep; 279(39):40927-37. PubMed ID: 15263010 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of PnpCD, a two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2+-dependent dioxygenases. Liu S; Su T; Zhang C; Zhang WM; Zhu D; Su J; Wei T; Wang K; Huang Y; Guo L; Xu S; Zhou NY; Gu L J Biol Chem; 2015 Oct; 290(40):24547-60. PubMed ID: 26304122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]