These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25217940)

  • 21. The glass transition and dielectric secondary relaxation of fructose-water mixtures.
    Shinyashiki N; Shinohara M; Iwata Y; Goto T; Oyama M; Suzuki S; Yamamoto W; Yagihara S; Inoue T; Oyaizu S; Yamamoto S; Ngai KL; Capaccioli S
    J Phys Chem B; 2008 Dec; 112(48):15470-7. PubMed ID: 18991437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brownian dynamics simulations of aging colloidal gels.
    d'Arjuzon RJ; Frith W; Melrose JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061404. PubMed ID: 16241223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses.
    Zhu ZG; Li YZ; Wang Z; Gao XQ; Wen P; Bai HY; Ngai KL; Wang WH
    J Chem Phys; 2014 Aug; 141(8):084506. PubMed ID: 25173020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Revisiting the influence of chain length on the α- and β-relaxations in oligomeric glass formers.
    Ngai KL
    J Chem Phys; 2013 Dec; 139(24):244912. PubMed ID: 24387401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids.
    Jakobsen B; Niss K; Olsen NB
    J Chem Phys; 2005 Dec; 123(23):234511. PubMed ID: 16392935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dielectric relaxation time of bulk water at 136-140 K, background loss and crystallization effects.
    Johari GP
    J Chem Phys; 2005 Apr; 122(14):144508. PubMed ID: 15847546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary relaxation behavior in a strong glass.
    Hu L; Yue Y
    J Phys Chem B; 2008 Jul; 112(30):9053-7. PubMed ID: 18605753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two secondary modes in decahydroisoquinoline: which one is the true Johari Goldstein process?
    Paluch M; Pawlus S; Hensel-Bielowka S; Kaminska E; Prevosto D; Capaccioli S; Rolla PA; Ngai KL
    J Chem Phys; 2005 Jun; 122(23):234506. PubMed ID: 16008461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films.
    Ngai KL; Capaccioli S; Paluch M; Prevosto D
    J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusion-controlled and "diffusionless" crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs.
    Sun Y; Xi H; Ediger MD; Richert R; Yu L
    J Chem Phys; 2009 Aug; 131(7):074506. PubMed ID: 19708750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.
    Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses.
    Yu HB; Richert R; Samwer K
    Sci Adv; 2017 Nov; 3(11):e1701577. PubMed ID: 29159283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-exponential nature of calorimetric and other relaxations: effects of 2 nm-size solutes, loss of translational diffusion, isomer specificity, and sample size.
    Johari GP; Khouri J
    J Chem Phys; 2013 Mar; 138(12):12A511. PubMed ID: 23556762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow molecular mobility in the amorphous solid state of fructose: fragility and aging.
    Correia NT; Diogo HP; Moura Ramos JJ
    J Food Sci; 2009; 74(9):E526-33. PubMed ID: 20492115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.
    Wojnarowska Z; Swiety-Pospiech A; Grzybowska K; Hawelek L; Paluch M; Ngai KL
    J Chem Phys; 2012 Apr; 136(16):164507. PubMed ID: 22559496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary relaxations in a series of organic phosphate glasses revealed by dielectric spectroscopy.
    Kahlau R; Dörfler T; Rössler EA
    J Chem Phys; 2013 Oct; 139(13):134504. PubMed ID: 24116572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interdependence of primary and Johari-Goldstein secondary relaxations in glass-forming systems.
    Kessairi K; Capaccioli S; Prevosto D; Lucchesi M; Sharifi S; Rolla PA
    J Phys Chem B; 2008 Apr; 112(15):4470-3. PubMed ID: 18366219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of the Johari-Goldstein process in rigid asymmetric molecules.
    Fragiadakis D; Roland CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042307. PubMed ID: 24229172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revealing β-relaxation mechanism based on energy distribution of flow units in metallic glass.
    Lu Z; Shang BS; Sun YT; Zhu ZG; Guan PF; Wang WH; Bai HY
    J Chem Phys; 2016 Apr; 144(14):144501. PubMed ID: 27083732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theory of relaxation and elasticity in polymer glasses.
    Chen K; Schweizer KS
    J Chem Phys; 2007 Jan; 126(1):014904. PubMed ID: 17212516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.