These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25218187)
1. Feasibility assessment for a novel reverse-phase wet granulation process: the effect of liquid saturation and binder liquid viscosity. Wade JB; Martin GP; Long DF Int J Pharm; 2014 Nov; 475(1-2):450-61. PubMed ID: 25218187 [TBL] [Abstract][Full Text] [Related]
2. Controlling granule size through breakage in a novel reverse-phase wet granulation process: the effect of impeller speed and binder liquid viscosity. Wade JB; Martin GP; Long DF Int J Pharm; 2015 Jan; 478(2):439-46. PubMed ID: 25475017 [TBL] [Abstract][Full Text] [Related]
3. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process. Wade JB; Martin GP; Long DF Int J Pharm; 2015 Jul; 488(1-2):95-101. PubMed ID: 25888799 [TBL] [Abstract][Full Text] [Related]
4. The development of a growth regime map for a novel reverse-phase wet granulation process. Wade JB; Martin GP; Long DF Int J Pharm; 2016 Oct; 512(1):224-233. PubMed ID: 27568497 [TBL] [Abstract][Full Text] [Related]
5. The use of Stokes deformation number as a predictive tool for material exchange behaviour of granules in the 'equilibrium phase' in high shear granulation. Bouwman AM; Visser MR; Meesters GM; Frijlink HW Int J Pharm; 2006 Aug; 318(1-2):78-85. PubMed ID: 16713144 [TBL] [Abstract][Full Text] [Related]
6. An investigation into the effect of formulation variables and process parameters on characteristics of granules obtained by in situ fluidized hot melt granulation. Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Durić Z Int J Pharm; 2012 Feb; 423(2):202-12. PubMed ID: 22197773 [TBL] [Abstract][Full Text] [Related]
7. The effect of the amount of binder liquid on the granulation mechanisms and structure of microcrystalline cellulose granules prepared by high shear granulation. Bouwman AM; Henstra MJ; Westerman D; Chung JT; Zhang Z; Ingram A; Seville JP; Frijlink HW Int J Pharm; 2005 Feb; 290(1-2):129-36. PubMed ID: 15664138 [TBL] [Abstract][Full Text] [Related]
8. Assessment of granulation technologies for an API with poor physical properties. Dalziel G; Nauka E; Zhang F; Kothari S; Xie M Drug Dev Ind Pharm; 2013 Jul; 39(7):985-95. PubMed ID: 22656190 [TBL] [Abstract][Full Text] [Related]
9. The effect of the physical state of binders on high-shear wet granulation and granule properties: a mechanistic approach to understand the high-shear wet granulation process. part IV. the impact of rheological state and tip-speeds. Li J; Tao L; Buckley D; Tao J; Gao J; Hubert M J Pharm Sci; 2013 Dec; 102(12):4384-94. PubMed ID: 24135976 [TBL] [Abstract][Full Text] [Related]
10. Optimizing a wet granulation process to obtain high-dose sustained-release tablets with Compritol 888 ATO. Rosiaux Y; Girard JM; Desvignes F; Miolane C; Marchaud D Drug Dev Ind Pharm; 2015; 41(10):1738-44. PubMed ID: 25652358 [TBL] [Abstract][Full Text] [Related]
11. Foam granulation: new developments in pharmaceutical solid oral dosage forms using twin screw extrusion machinery. Thompson MR; Weatherley S; Pukadyil RN; Sheskey PJ Drug Dev Ind Pharm; 2012 Jul; 38(7):771-84. PubMed ID: 22085462 [TBL] [Abstract][Full Text] [Related]
12. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review. Burggraeve A; Monteyne T; Vervaet C; Remon JP; De Beer T Eur J Pharm Biopharm; 2013 Jan; 83(1):2-15. PubMed ID: 23041243 [TBL] [Abstract][Full Text] [Related]
13. Formulation design for optimal high-shear wet granulation using on-line torque measurements. Cavinato M; Bresciani M; Machin M; Bellazzi G; Canu P; Santomaso AC Int J Pharm; 2010 Mar; 387(1-2):48-55. PubMed ID: 19969055 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of multi-component formulation granules formed using distributive mixing elements in twin screw granulation. Pradhan SU; Sen M; Li J; Gabbott I; Reynolds G; Litster JD; Wassgren CR Drug Dev Ind Pharm; 2018 Nov; 44(11):1826-1837. PubMed ID: 30027770 [TBL] [Abstract][Full Text] [Related]
15. Effects of powder particle size and binder viscosity on intergranular and intragranular particle size heterogeneity during high shear granulation. Schaefer T; Johnsen D; Johansen A Eur J Pharm Sci; 2004 Mar; 21(4):525-31. PubMed ID: 14998584 [TBL] [Abstract][Full Text] [Related]
16. Effect of drug substance particle size on the characteristics of granulation manufactured in a high-shear mixer. Badawy SI; Lee TJ; Menning MM AAPS PharmSciTech; 2000 Nov; 1(4):E33. PubMed ID: 14727898 [TBL] [Abstract][Full Text] [Related]
17. Twin screw granulation as a simple and efficient tool for continuous wet granulation. Keleb EI; Vermeire A; Vervaet C; Remon JP Int J Pharm; 2004 Apr; 273(1-2):183-94. PubMed ID: 15010142 [TBL] [Abstract][Full Text] [Related]
18. Effect of starting material particle size on its agglomeration behavior in high shear wet granulation. Badawy SI; Hussain MA AAPS PharmSciTech; 2004 May; 5(3):e38. PubMed ID: 15760071 [TBL] [Abstract][Full Text] [Related]
19. Analysis of fluidized bed granulation process using conventional and novel modeling techniques. Petrović J; Chansanroj K; Meier B; Ibrić S; Betz G Eur J Pharm Sci; 2011 Oct; 44(3):227-34. PubMed ID: 21839830 [TBL] [Abstract][Full Text] [Related]
20. The effect of the physical states of binders on high-shear wet granulation and granule properties: a mechanistic approach toward understanding high-shear wet granulation process. Part II. Granulation and granule properties. Li J; Tao L; Dali M; Buckley D; Gao J; Hubert M J Pharm Sci; 2011 Jan; 100(1):294-310. PubMed ID: 20575062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]